HARVARD UNIVERSITY

LIBRARY OF

The Medical School
AND

The School of Public Health

ts Harvard Medical Library in the Francis A.Countway Library of Medicine ~Boston

Digitized by the Internet Archive in 2011 with funding from
Open Knowledge Commons and Harvard Medical School
http://www.archive.org/details/dralberthallersp01 hall

Mw? Harland
 Dr. Albert Haller's

PHYSIOLOGY;

> BEING A

COURSE of LECTURES

UPON THE
Visceral Anatomy and Vital Oeconomy of Human Bodies:
INCLUDING

The latent and mot confiderable Discoveries and Improvements, which have been made by the mont eminent Profefiurs, through all Parts of Europe, down to the prefent Year.

Compiled for the USe of the University of Gottengen; now illuftrated with ufeful Remarks; with an Hiftary of Medicine; and with a Nofology, or Doctrine of Difeafes.

IN TWO VOLUMES.

VO L. I.

LO ND ON:

Printed for W. Innys and J. Richardson, in RaterNo fer Row.

$$
\overline{\text { M.DCC.LIV. }}
$$

HARVARD UNVERSITY
SCHOOL OF MEDICINE RND PURLIC HEALTETK
แ际スत"
1 _Viny 1944

> Benigno Scrutinio
> Celeberrimi Archiatri
> ALBERTI ab HALLER
> Egregii hujus operis auctoris;
> Regiæ Majeftatis Britannicæ Electoralis Hannoverienfis Confliarii Aulici, \& Archiatri ${ }^{\text {© }}$ in

Academiâ Gottingæ florentifinấ Medicinæ, Anatomiæ, Chururgiæ, Botanicefque Profefforis publici, ordinarii, Ejuf demque Chirurgorum Collegii Præfidis in

> Academita Curioforum Imperialis Etiamque in

Societatibus Scientiarum Regiis Borufiæ, Gottingæ, Swetiæ, Upfalize, Parifienfi, Londinenfi, \&xc.
Confocii plurimum venerandis nec non
In fupremo Senatu Reipublica B ERNENSIS Ducentum Yiri: in
Omnibus Linguis Europzanis Lectiffimi,
Noftrâque Anglorum Peritifini A 2

[iv]

Omnibus

In Litteris Humanioribus, Scientiifque Callentifimi ; fed
In ampliffima Facultate propria, ubique \& fere ad miraculum

Perdocti :
H ※ C
In linguam Britanniæ vernaculam egregii fui Operis converfi

Editio, Humilimè offertur,
D. D. D.

Servo fuo addictiffimo SAMUELE MIHLES
Acadæmix Glafguenfis Doctore Medico
Collegiique Regii Medicorum Londinenfium Diplomare Permiffio.

TOTHE

R E A D E R.

ALL faculties, arts and fciences, are allowed by the ableft judges to be unavoidably fubject to fuch changes by time and af-ter-improvements, as plainly render a new digeft or fyftem of them equally ufeful and neceffary, once at leaft within a quarter of an age: and it would be well if our many annual abortives, that ferve chiefly to perplex beginners, or banifh better fyftems, could within thefe bounds be reftrained. The fpace prefcribed, has indeed twice elapfed fince the appearance of fuch a digeft, from under the quill of the ingenious Dr. James Keill, and that of Dr. Drake; and it is now near a fourth of an age fince the lectures of our great Dr. Boerhaave, were by him collected: all which performances being drawn by mafterly pencils, were indeed excellent for their day, and fuch only as can pretend to hare any competition with the prefent fyftem. A reading of Dr. Boerhaave's lecures, formerly publifhed by our author in Latin, and by ourfelves in Englifh, may conduce to explain many particulars more largely to weaker capacities than could be done within this compais; but thofe who are tolerably read in the faculty, may lea:n hence
not only the fum and fubftance of thofe more voluminous lectures, but alfo numberlefs important and ufeful difcoveries, made within the fourth of an age paft, fince thofe lectures were clofed; communicated to the public by our learned author, and other eminent profeffors in feveral parts of Europe. To render our author's fenfe juft and plain, has often required more words than occur in the original; but 'tis more eligible to be well underftood in two or three words, than to be doubtful or obfcure in one. We bave alfo taken the liberty to infert a number of confiderable remarks, either philofophical or practical, as our own obfervations fuggefted them in the courfe of our verfion; which with the Hiftory and Nofology, have indeed fomewhat increafed the bulk and price of the fyftem, but nether, we hope, beyond proportionable meafures of ufeful inftruction and practical utility: at leaft our views in the whole were only to employ our leifure hours in recommending the beft means we know, to the hands of thofe who defire to gain a true and ufeful knowledge of their profeffion, in the mof plain, juft, and eafy manner.

$$
S . N
$$

CONTENTS

$$
O F T H E
$$

FIRSTVOLUME.

TISTORT of Medicine (r.) before Hippop crates. Page v
(2.) From Hippocrates to Harvey. xvii
(3.) From Harvey to thefe times. lix Lect. I. Of Animal Fibres. I II. Of the Cellular (web-like) Subfance, and its Fat.16
IIII. Of the Arteries and Veins. 29
IV. Of the Circulation. 54
V. Of the Heart. 64
VI. Actions of the Arteries. 106
WII. Nature of the Blood and Fuices. 136
viii Contents of the firft Volume.
Lect. VIII. Of the Secretions. 136
IX. Of Nutrition and Growth. 192
X. Of Refpiration. 217
XI. Of the Voice and Speech. 253
XII. Of the Brain and Nerves. 266
XIII. Of the Motion of the Mufcles. 323

A N

Historical Introduction

Concerning the
ORIGIN and PROGRESS

$$
\mathrm{OF}
$$

PHYSIOLOGY and MEDICINE.

§. I. T T will be readily allowed by the wifer part of the world, that the trite platonic adage, advifing man to a knowledge of himfelf ((2v $\tilde{\omega} \theta, C \leqslant \alpha \cup \tau \circ v)$ ftrikes more at the prieft and phyfician, than the reft of fociety; fince the latter is obliged to carry his difquifitions much deeper than the curious painter or fatuary, even to the innermoft organizations and actions of each part, as far as armed fenfe and found reafon will conduct him; in order to underftand, or explain, every change and appearance refuling from the body only, or from the body and mind conjunctiy, whether in a healthy or a difeafed ftate: while the former, lefs concerned about the organizations of the body, or its mutual connexions with the mind, advances much higher by the fale of natural and revealed truth, in determining the VoL. I. for the prefent or the future. Man then, is one divifible effence, compounded of animal body and intellectual foul ; yet fo that his identity or perfonality refides in the laft, as the fuperior part, which is however incompleat, without a duly difpofed and organifed body, as the medium of all her operations in life. It is enough, that we know fhe is, becaufe fhe operates, thinks, and reafons; and that fhe always will be, becaufe fhe is immaterial, therefore unextended, and has no power not to be. As for the operations of the foul, after fhe is feparated from the body by death, they muft be purely intellectual ; like thofe of angels or fpirits, and confequently fuch as we can have no notion of while fhe is connected to body, without whofe medium we can naturally have no perceptions, either of ourfelves or of an external world *.
§. II. Our body then, in its primitive ftate, is gradually built up, from gelatinous or flimy fluids, fhooting out firf into cob-web-like threads and plains, whereof the moft part are by degrees moulded into two fprings, which like thofe of a watch, we fhall diftinguifh into (I.) the beart and fanguiferous fyftem, as the fufee or main fpring; and (2.) the enceppalon, and appended nervous fyftem, as the pendu-

* [Arifot. I. de part. anim. 5. \& Cicero 1. Tufc. queftion.] Anima fit animus, ignifve, nefcio: nec me p:sdet nefcire quod nefciam.-non videtur, fed ex functionibus deprehenditur [Apuleius de mundo]: eamque immortalem effe, \& ab interitu liberam [Plato, io. de repub.] Morte carent anime [Ovid. 15. Metam.]
lum-fpring, or regulator. To thefe two fprings there are fubfervient, a fet of correfponding hygraulic wheels, or intermediate fyftematical organs, called vifcera, glands, \&xc. ferving either to the faculty of nutrition, fenfation, motion, or procreation, in their moft extenfive latitudes: all which are moved or actuated by a fort of endlefs or circular chain of globular and albuminous juices, intermixed all together in the heart and arteries; thence feparated into various forts and confiftencies, in different parts, and returned again (fo much as are found of them) into commixture as at firft, while the morbid or unfound parts are thrown off by certain emunctories or out-lets. And this is the moft contracted or aggregated view that can be had of the human body, at once, confidered. as an animated and hygraulic automaton.
§. III. It is therefore from the fuperb and fo much admired fabric of our body, as the immediate refidence and interpreter of an immortal foul, that medicine properly begins to draw the firft lines of her ample landfcape : for phyfic has been allowed by the wife men of all ages to begin where philofophy ends ; and they have equaliy granted, that all the lines of wide philofophy center in him, whofe animal body is both the head and epitome of the whole terraqueous world ; to travel through and graphically defcribe the numberlefs regions of

[^0]which, under health and difeafe, is the proper object of medicine. But here we often carefs and admire the defpicable matter, inftead of the infinitely wife form given to it by the fignet of omnipotency; for if we do but reflect either upon its mucaginous origination, in the firft months of pregnancy, before it has any ability to converie with the foul, or upon its putrilaginous diffolution into an abominable vapour (into which a very few days of fplendant fun, in a hot climate, will wholly convert it, except the fkeleton of bones) after it is thrown off, like a worn-out-garment, from the celeftial inhabitant ; we fhall rather quit the matter for the form, and even make that only a ftep to look up after the adorable fignet, which firft gave the admirable impreffion.
§. IV. Our primitive anceftors, not yet acquainted with thofe luxuries and abufes of natural benefits, which were afterwards fo much cultivated, and are now fpread to the prejudice of human perfection throughout the world, lived contentedly on the tender roots and plants, of their own and nature's tillage, joined with the mealy pulfes or grain of the field, and entiched by oily and fucculent fruits of the tree and buth *. The fimplicity of their archi-

[^1]fecture, both as to cloathing and habitation, equalled that of their diet. A warm fkin wrapped about their waift and fhoulders, with another upon ftubble, for their couch; a natural grot or cavern, fheltered by an agreeable thicket, and bordering upon a refrefhing fpring or rivulet, compleated the retinue of their apparel, and the grandeur of their hotel. They beftowed their pride, envy, and intemperance in labouring the earth, in training their flock, inftructing their children, and providing a little dinner or fupper for themfelves and cattle; which, next to their religious obligations, it was the height of their ambition to fee fafe and found, fleeping round them at night. This fimplicity of life made them healthy, and even hardened to a proof, againft the inclemencies of air, aliments, and moft diftempers that now afflict the puny race of mankind; but could not fecure them from wounds, bruifes, burns, fractures, diflocations, and other accidents that fo earneftly call for chirurgical aid.
§. V. Therefore as furgery, out of neceffity, became the earlieft as well as the moft fenfible part of medicine; fo anatomy, for the fame reafons, always followed clofe to her heels: and both were obliged to make fome figure in the world, before the fkill of phyficians could be called to the bar of practice. There is no room to doubt, but our firn fathers were fo wife and void of fupertition, that if they happened to break a bone, or dillocate a joint, they had a ready recourfe to the next dormitory or tomb, and confulted the figures or connections
of the bones, to relieve themfelves; in the fame manner as pain and necefity would inftantly oblige them to try various fubftances for the relief of burns, wounds, $\& c c$. For thefe endeavours for relief, we fee now naturally exerted in every injured perfon, who knows nothing either of phyfic or furgery. The neceffity which dependents are under, to confult their fuperiors, for relief in all cafes of diftrefs, made the oldeft patriarchs, priefts, and princes, the wifeft anatomifts, no lefs than the ableft furgeons and phyficians. Some of thefe, who were oftener called upon for help, invited by a natural curiofity, no lefs than a defire of being ufeful, and carefled with the honours or rewards that attend on gratuity, doubtlefs took into his cuftody the firft natural fkeleton, either of man or beaft, that fell in his way, cleanfed by the returning dews or rains, and diffected or dried by the diffolving rays of the fun. Thus began the earlieft, and the eafient part of anatomy, ofteology; which, with the fittations of the ligaments, joints, nerves, tendons, and larger external blood-veffels, made one of the moft ufeful and neceffary branches of princely learning; to be employed in the murdering wars, that ever plagued mankind from the firft cffspring of Adam. Thus the art of healing, as yet chielly chirurgical, and raifed from repeated practices on the victims of inclement wars, or unavoidable accidents, was for many years lodged in the hands of a few elders, priefts, and fchool-men, among the Hebrews and contiguous nations of the eaft; who taught it traditionally
ditionally as a moft ufeful branch of philofophy, from the father or mafter to the fon or engaged pupil ($\varpi \varepsilon \pi c \kappa \delta \delta \varepsilon \mu \mu \eta v o s)$: from which laft a filial obedience and perpetual gratitude were ever folemnly enjoined and expected; fince the birth in arts, fciences, and learning, appeared even of fuperior value to that of nature. Examples of this are hereafter notable in the munificence of great Alexander, to his preceptor Ariftotle; in the oath of allegiance prefcribed by Hippocrates to his pupils, \&c.
§. VI. Soon after the flood the art of healing feems to have extended, together with monarchy, near Mefopotamia, under Phobus king of Aflyria; whence itfpread with arts and languagesinto Egypt and Chaldea. For it appears by the chronographical monuments wrote concerning the affairs of 不gypt, by order of king Prolomeus Philadelphus, under the care of the learned Manethus, of the facerdotal order, tranfcribed and handed down to us by the truity Syncellus [of the eighth century, in his Greek hiftory of the dynafties of the kings of Fgypt, in whofe antiquities he appears greatly to have rivalled both Herodotus and Diodorus Siculus (pag. 54. and 56. cap. 6.] "That Mercurius, " firft king of the Thebans, among other "things, wrote books or fkins upon anatomy; "for be was a pbyfcion." pspoveci Bibion ava-
 confirmed to us by Clemens Alexandrinus, of equal credit, and near fix ages older that Syncellus; who tells us (Stromat. lib. 1. p. 634.b.). "That out of forty two difertations left by
" Mercurius, fix of them appertained to the " philofophy of the Ægyptians; and the other " fix related to the art of healing, of which " the firft was anatomical, upon the conftruction
 $7 \alpha \sigma \kappa \varepsilon \cup \tilde{n}$. It is therefore not without reafon, faid by Pliny (1.29. c. 2.), that the 届gyptians claim phyfic as an art invented amongft them. For this Mercurius flourimed foon after the death of Noah (Gen. ix. 28.), a whole thoufand years before the Refolapian inventor of the Greeks (whofe fon Machon, is by Homer (II.B.) mentioned at the fackage of Troy); fifteen ages before the times of Hippocrates, and near twenty before the days of Galen.
§. VII. It is not to be wondered, that Mercurius $⿸$ Egyptiacus fhould have been fo early able to leave feveral volumina or fkins upon anatomy in the temple of Memphis; if we confider the opportunities thofe had of knowledge in the frbject, who were often both patriarch, prieft, and king, as well as phyfician to their fubjects. For under thofe characters, there were many ample fountains laid open to them; fuch as (I.) the orthotomia, or juft manner of flaying, cutting, and preparing animals for facrifice, taught by God to our firft parents, and required by him from their fucceffors, who learned it traditionally before Mofes, and afterwards by profcript, till at length the crucifixon of our Saviour fer the emblem of him aflde, Gen. c. iv. v. 4.). For it is not to be fuppofed, but Cain and Abel were fally inftructed by their father in all points required to
a juft adminiftration of facrifice; otherwife God would not have refufed to take by fire from heaven the offering of the former, for offending him by a wilful concupifcence, in not facrificing the beft of his produce; for which, and malicioufly murdering his brother, as God's favourite, and a type of our Saviour; he Cain was cut off from the family of Adam, as a type of the unbelieving Jews, and deftined to be accidentally fhot from Lamech (Gen. iv. 23.).---(2.) From the fuperfitious and flowlydreaming infpections of the internal parts of animals facrificed to idols by Gentiles; which was probably a very early corruption made by fome of the defcendants of Noah.---(3.) From the dextrous killing, cutting-up, and difplaying to advantage the feveral parts of large animals, by the art of butchery ; which foon became a profeffion, after a licence was given by God for men to eat fiefh, in the days of Noah (Gen. ix. 4.).---(4.) From the care which all princes and great men took to have their predeceffors accurately embalmed; which muft have been executed with very great exactnefs, fince we are told (Gen. 1. 2. and 3.) in the original, that feveral phyficians were employed forty days in embalming Jacob Ifrael; and that this was the ufual time for them to be employed in fuch a work *.---And laftly, (5.) from the frequent and ample wounds that ever befel men, either accidentally or in wars: which laft gave even to philofophers very juft notions of anatomy, fince the learned Galen himfelf admires and praifes (de ufu part. 4. I4.) the great knowledge
ledge and fkill of the poet Homer, who wrote about nine or ten ages before himfelf, and before chriftianity. See feveral elegant flowers of anatomy in his Iliad. Lib. iv. ver. 5^{17}, \& feq. Lib. v. ver. $65, \& f$ feq ---Lib. v. ver. $305,8 \pm$ feq.---Lib. xi. ver. $577 .--$ Lib. xii. ver. 384 . \&c.

REMARK.

* The great recorder of antiquity, Herodotus (Euterpe. cap. 87. \& 88.), who wrote his hiftory near five ages before chriftianity, defcribes three methods of embalming in ufe among the 左gyptians, of which only one could be of any confiderable fervice to anatomy; which we fhall therefore deforibe, without prefuming to determine whether it be the fame with that practifed upon Jacob, Jofeph (Gen. 1. ver. 2. \& 3.---ib. ver. 25. ult.), and the other patriarchs, or not. "Finft the director, " having laid out the body, and marked how far "s the cutter was to open the left fide; this laft ex©s tracted the brain through the noftrils, and cut 6s throw the marked fide with an 压gyptian "s pebble: which being effected, he immeaiately "took to his heels; becaufe thereupon it was " cuftomary for thofe prefent to curfe him, and or through fones after him. Next came thofe s called the curers, falters, and anointers of the "body, as they were moft citeamed in their pro. \therefore feflions; and now one of thefe extracted the "s guts, and other vifcera of the body, except the is heart and kidneys, through the incifion that had \therefore been made: after this, another wained the venis turs with Phcenician wine, charged with per"tumes; and then the body, thus wathed, was fucceffively anointed for the fpace of thirty days, 6s with balfam of the cedar-tree, and other coftly "prefervatives: next, the fomach and guts, " which
${ }^{66}$ which had been before extracted, were fuffed
" with myrrh, caffia-wood, and other perfumes
" (except incenfe or frankincenfe), and then fewed
" up in the body, which they now falted with " nitre" [i. e. a falt of the ancients, more lixivial or like pot-afh than our nitre] " for the fpace of ${ }^{\text {sc }}$ feventy days, as the longeft term that the body
"s could bear the falt. This time being elapfed,
" the wafhed body is next rolled up in fine linen
" fwaths, fpread like a plaifter with gums, which
" the Ægyptians generally ufe inftead of glue. Be-
" 6 ing thus covered to a juft thicknefs, they make
"' a hollow image or cafe of wood, correfpond-
" ing to the dead original ; which being thus in-
"clofed, they repofit in fome clofet or cell of a "chamber," [or funeral dormitory] " ftanding " upright on its feet."

2. Thus fmall, rude, and natural (n°. I. fupra) was the birth of thofe now copious and myltical profeffions we call anatomy and medicine, feen amongft the earlieft offsprings of neceffity; which latter part, medicine, had its firft rudiments laid by (r.) accident; (2.) infinct, and (3.) promifcuous experiment.---By accident, we mean the difcovery of medicines undefignedly made, like what we are told by M. Geofrey of the celebrated batk; viz. that a number of the trees being blown down into an adjacent lake, gave fuch a bitter tincture to the water, that no perfons would ufe it, nor any cattle drink it: 'till at length an Indian, urged with fevere thirt, in an intermittent fever, eagerly took two or three large draughts, which cured his diftemper, and gave fuch repute to the waters, that they were Con exhaufted;
and when the lake, filled by the next rains, was found without its bitternefs and virtues, it was concluded they both arofe from the macerated trees which had been formerly blown into it, as indeed they were foon convinced by experiment.--- By inftinet we mean that difcretion, which in different degrees is diffufed through all animals, directing them to choofe what is good, and avoid whatever is evil or defructive to them; which faculty is poffeffed by man in a degree far fuperior to the reft of the animal creation. We fee the fond and familiar beaf we call a dog, having a fenfible membranous fomach like that of ourfelves, with a much more harp or corroding faliva and fomach juice, will naturally endeavour to allay his hungry pain by the firft (even dry) bone that comes in his way, reducible to the grinding powers of his teeth, and makes it more an abrobent to acrimony, than a matter of nourithment; whence the dry chalky fæces thence left, called aibum græcum. The fame does the green-ficknefs-girl with flates, chalk, wail, athes, \&xc. from an offending acid and debility. But if putrid flefh makes an offending alcaly on the itomach of dog or cat, they naturally fall to eating of acefcent grafs, \&c. In fevers alfo, nature rejects what is bad, and generally craves for what is falutary to the diftemper.---By promifcuous experiment, we intend remedies found by hafty or indifcriminate tryals, not pointed out by flow reafon or ininfinct; as, e. g. if a peafant cuts or burns his finger, a number of odd things (that come firft
ts hand) are immediately applied, and thofe which hurt or heal are accordingly remarked. In this way many valuable remedies have been firf found by vulgar hands, that have come afterwards to a better ufe under the higheft in our profeffion; to inflance only in fome late lixivial medicines for the fone or gravel, \&xc. In this manner, accident, inftinct, and loofe experiment drew fome of the firf lines of phyfic ; improved afterwards by degrees into a profeffion, like other human arts and fciences.
3. Afterwards phyfic went on improving among the Greeks, in a much more fenfible way, viz: (I.) by expofing their fick in the moft public ways and markets *, obliging paffengers to afk about their diftempers, and inform them if they had known any thing ferviceable in the like cafes; (2.) by appointing certain perfons (chiefly priefts from the temples of Apollo and Ffculapius, as the moft learned and able), to practife in the difeafes of fome one part, as the eye, ear, \&cc. by which fuch gained much wealth and honour to their families, within which they hoarded and cramped up the art; (3.) by writing down privately each their particular obfervations (n°. I. fupra), philofophical, anatomical, or medical; and by regiftering publickly the principal remedies that had been found ufeful, upon tables in the pillars and

* Fegrotos fuos in publico proponebant, it pratereuntium quivis, fi quid vel ipfe eodem morbo conflictatus vel fimiliter laboranti opitulatus medelæ nofer, if ægrutant! fignificaret. Plutarch. lat. vivend.
walls of thofe temples 4 , which were peculiarly dedicated to their phyfical deities, Apollo, and Æfculapius. A fragment of one of thefe Greek tables, ftill preferved at Rome, and publihed in the collections of Gruterus, runs thus: " Lucius being afflicted with a pain in his fide, " implored the affiftance of the God Æifcula" pius; whereupon the oracle directed him " to go to the altar, to take fome of the afhes, " mix them with wine, and apply them to the " aching-fide: which done, he grew well, " and gave thanks to the god, and his health " to the fervice of his country." Wood afhes treeped in wine would doubtlefs form a fuccedaneum to what we now call opodeltoch; and be of ufe to rheumatic pains of the fide, or other parts. Sometimes, in cafes of flerility and weaknefs, they were ordered to put a hatchet or fome iron inftrument in the cleft of a recent oak, and take the crocus or ruft formed upon it by the afrringent, fubacid fap, \&cc. Thus the faid temples weete a fort of hofpitals, to which the fick repaired for advice; which they here received, either in dreams or by ear, whenever the devil or his priefts thought fit to make their difclofures; which they often did to the beft of their power, in order to fix thofe honours and worthips upon themfelves, which were due only to almighty God.

4. Thus went on phyfic, improving in the hands of priefts, and a few Greek philofophers,

[^2]which laft had fchools, chiefly phyfical, at Rhodes, Coos, Cnidos, and Epidaurus, where Pythagoras, Heraclitus, and Democritus were for fome time teachers: but the mon confiderable of them was the fchool of Cos, in the inand Coos; where Herodicus, who introduced the gymnafia or exercifes into medicine, and his fon, the great Hippocrates *, were educated. And this leads us to the birth or fecond æra of phyfic, which now, too perfect and formidable to be any longer confined within the womb of philofophy, loudly called for fome hand to deliver her from the cramping chains and fecret cabinets of felect priefts, philofophers, and topical practifers; that the might come freely abroad as a liberal fcience, to improve knowledge, and beimproved herfelf, under no other refraints than thofe of invariable truth and common utility. This tafk then was referved to the great Hippocrates, from whofe time we date the genuine nativity of phyfic, in all her branches; from whence forward, to the midft of the laft century, we date her puerile growth

* Rfculapius, quoniam adhuc rudem is vulgarem hanc fcientiam paulo fubsilus excoluit, in deorum numerum receptus eft. Hujus deinde duo flii Podalarius \& Machaon Bello Trojano ducem Agamemnonem fequuti nor mediocrem opem commilitonibus fuis attulerunt. Homer. II. b.-Democriti autem difcipulus, Hippocrates Cous, prim mus quidem ex omnibus memoria dignis ab ftudio fapientiæ difciplinam hanc feparavit. Celfus in praf.-Hippocrati honores, quos Herculi, decrevit Gracia. Plin. 7. 37. Medicinam qua à Trojanis temporibus in nole denfifima latuerat, ufque ad Peloponnefiacum bellum, revocavit in lucem; \& inftuit hanc qua Climison vocatur. Plin. lib. 29.b. 1.
and minority; when our Britifh Hippocrates qualified her to plead rationally and juftly in all her caufes: and being now near the fummit of her perfection, the prefent pofure of affairs in the medical world, leave me in fome doubt, whether we are not hortly to expect her declenfion.
§. VIII. The firt inventor or reftorer of medicine among the Greeks, is faid to have been Apollo; one of whofe fons or fucceffors, Æículapius, came the next to him in honours and repute, for confiderably improving or enlarging the bounds of healing; which from the time that this laft great profeffor was killed by a clap of thunder, fuffered a fort of extinction or interregnum for near 500 years; 'till in the reign of the wife Perfian king Artaxerxes, it was again reftored, by the fplendour of Hippocrates, one of the faid Afclepian or Æfculapian family, in the iffand Coos. [Ifidorus Hifpalenfis. Orig. iv. 3.4.7 He renewed the divine honours tributary to his inventive anceftors, Apollo and Æfculapius, by confecrating temples to their fervice, in which the mof fucceffful remedies for difeafes were recorded: and when thofe temples were afterwards deftroyed by fire, he with great judgment reduced his collections into a liberal fyftem; and frif infituted the clinical or bed-ife practice, that has ever fince been followed, infead of obliging the fick or injured to repair for help to the temples. [Plimius fecundus, hift. nat. 29. I.] Thus phyfic, invented by Apollo, and amplified by Resculapiut, was at length perfected among the Greeks,
xvili
by their fucceffor Hippocrates; for which he had equally with his anceftors, divine honours paid to his memory, by the paganifm of thofe days and countries: to which Celfus, his Latin imitator, four ages after, juft before Chriftianity, under the emperor Juftus, readily fubfcribes himfelf (in pref. lib. i.) ; for that Hippocrates had firft feparated phyfic from polymathy, and generoufly communicated its precepts, reduced to a plain fyftem, which his anceftors had concealed or reftrained within their own families*。

2. Paufanius, the Grecian, who lived after Celfus at Rome, in the fecond age of chriftianity, in the tenth book of his defcriptions of Greece; tells us, that among other prefents to the delphic temple of Apollo, there was kept one, given by Hippocrates, and of a very great antiquity; being the figure of a man in brafs, waited even to the bones by a confumption.--In this probably might be feen fome of the earlieft and jufteft lines of anatomy, as the had as yet appeared to the anceftors of Hippocrates.
3. This laft father and glory of medicine, fuch, not only to his learned countrymen the Greeks, but to all more remote and lefs polifhed nations, and even to all diftant ages, fo long as phyfic herfelf fhall fubfift; was defcended from the fame name in the phyfical line, from efculapius (n°. I. fup.) born an. mundi 3512 , in the city of Cos, of the ifland Coos, near the Attic continent; and flourifhed in the adjacent countries, about five ages before the coming of our faviour. Hippocrates, like other great genuifes, fet out even young, in his pro* V. loc. citat. fub. p. xv.

Vol. I.
b
fefinon
feffion; and having quickly accomplithed his ftudies in philology, rhetoric and logic, under Gorgias Leontius; in geometry, aftronomy, and philofophy, under Democritus of Abdera; and in all the branches of medicine, under his two great medical anceftors, his grand-father Hippocrates, and his father Heraclides, who were defcended the 14 th family, in a right line from the two fons of 压fculapius, Podalirius and Machaon, (mentioned as princes by Homer, at the fackage of Troy; and after promoted, the former to be king of Caria, in the leffer Afia; and the latter fovereign of Mefene, included as a peninfula betwixt the Tygris and Euphrates, in the Babilonic part of Afia.). He fpent fome of his days in the academical difciplination of medical youths, in his native city, where an $\nVdash f c u l a p i a n ~ m u f x u m ~ h a d ~ b e e n ~ e r e c t-~-~$ ed by his anceftors to teach them ; for whom he prefcribed didactical aphorifms, before he wrote his fyftem, and before the conflagration of the medical temples (n°. I. fup.) ; but the majority of his life was fpent, like that of the other great phyficians and philofophers of thofe times, perpetually itinerant.
4. Although he was archiater to Perdica's king of Macedon, courted and careffed by all the greateft kings, princes, and philofophers of his day; yet he always appeared as the grave and plain fophift, wore a fort of cowl or capuce for the conveniency of travelling, and fpared no labours by land or fea, to relieve the calamities of his country. He always held fuch a ftrict regard for the principles of
truth,
truth, honour, and the moral œconomy of his wife miftrefs, nature, as gave him a laudable contempt over the wealth, pleafures, and honours of the great; which, with his learned works, amicable and humane difpofition to people of all ranks, have left him a glorious memory, untainted with the ufual pagan corruptions. His inceffant travels through all parts of Macedonia, Thrace, and Theffalia, were equally ufeful to his country, as entertaining and inftructive to himfelf; becaufe he always kept a journal, into which he tranfribed all adverfaria or obfervations that appeared worthy of notice: although this gave occafion for thofe who envied his great character, to fufpect, and even to fay, that he procured the conflagration of the public library belonging to the phyfic-fchool of Cnidos; becaufe having thus fecured its flowers, he might the better fend them out to the world, as thofe of his own growth or culture; which was in reality a malicious cacalumny, for having efpoufed the caufe of truth, in oppofition to the falfe dogmata taught by that fchool, who judged every difeafe that occurred to be of a new kind.
5. Many of his adverfaria wife probably collected from the infriptions, temples, philofophers, and phyficians vifited in his tours; but till the bulk muft be afcribed to his own great genius and extenfive practice; for by his own confeffion, "He never travelled or entered any "s houfe but when he had a call to faccour the "s diftreffed." His magnanimity and parriot love appeared remarkably in refufing to affift Ar-
taxerxes in a plague that ravaged his army, who offered him a fee of 15,000 guineas, with other honours and advantages; but he returned for anfwer to his Perfian majefty, that he was too rich to accept honourably any proffers that could be made from barbarians, the declared enemies to Greece. He always inculcated charity to his growing difciples, by advifing them to take up with the common neceflaries of life, as a proper meafure for their ambition ; in which he fet them a good example, by as readily attending the poor for nothing, as the rich for large fums. This generous difpofition led him to refufe a fee of 1500 guineas from the city of Abdera, for a vifit to their great philofopher and fenator Democritus, fufpected of madnefs, to whom he bad been formerly a pupil in philofophy. Macrobius fays of him, that he could neither deceive, nor be deceived. His charity gained him from every body the love of a father; and his merits raifed him more than all the honours that are due to mortal man. The people of Argos erected a ftatue of gold to his memory; and thofe of Athens ordered for him crowns of the fame metal. The two greateft men of the fucceeding age, Plato and Ariftotle, propofed him as a patiern to form themfelves by; and Arifotle chofe his frile to be a rule for his writings; which has made him more concife and methodical than Plato.
6. But at length, in a very advanced age, the great Hippocrates himfelf was cruthed in Theffalia, by the jaws of the common devourer, from whom he had refcued multitudes; and was emtombed with due honours in the way betwixtLariffa and Gortona. Every where, for a long time after his death, Hippocrates had idol facrifices offered to him; even much againtt his natural inclinations, which declared for no other facrifice than that of diligent fudy in his writings, and a careful tryal of their truth and reafonablenefs in practice. What a pagan phyfician writes to his friend Eucrates, is remarkable to this purpofe. I have, fays he, a brazen Hippocrates, of near a cubit in length, who when the lamp before him is out, takes a tour all round my houfe, rattling and rummaging over all my boxes, mixing or jumbling together my medicines, throwing open my doors, \&c. and this, more efpecially if we delay the annual facrifice that is ufually made to him. I muft therefore declare that Hippocrates the phyfician fill requires facrifice, and is highly difpleafed at neglecting the feftivals of divine worfhip to him, when the fated feafon returns: but he takes it kindly enough to be a gueft in the feaftings, to have his head crowned, and a libation of wine or mead poured out to him.---For the principal parts of this life of Hippocrates, we are beholden to the learned Sieur A. Dacier \lfloor in his elegant verfion of feveral of the moft ufeful books of Hippocrates: entitled OEuvres d'Hippocrates. E®c. 12 ${ }^{\circ}$. Par.]. But his writings we thall mention more particularly hereafter.
§. 9. The works of Hippocrates are indeed as much fuperior in point of merit, as they are prior in poine of time to thofe of his kinfman

Aritotle; who was born near a quarter of an age after his deceafed anceftor, and illuftrious pattern to him for learning, ant. Chrift. an. 384 : being the fon of Nichomachus, phyfician to the great Alexander's grand-father, Amintas; and directly defcended in the Æffulapian line. But Ariftotle being left early an orphan, the appetites of his, youth milled him from his ftudies, and foon fquandered his eftate, which obliged him to take the military character ; but that ill fuiting his genius, was foon relinquifhed to renew the purfuit of his philofophical fudies at Athens, where he is faid to have been under Plato from the age of 18 to 37 ; during which time good part of his living was gained by vending pere. fumes, and medical noftrums, his patrimony being now entirely exhaufed. Here, laying afide all indulgencies for that of clofe ftudy, with eating little, and fleeping lefs, he foon got a-head of the Platonic fchool; and gained himfelf a reputation, that after the deceafe of Plato, reached the ear of king Philip of Macedon, who made him praceptor to his fon, the great Alexander, then about 14; whofe education, in all parts of polymathy, Ariftotle compleated in about eight years. Being afterwards fufpected of partaking in a confpiracy againf his young matter, all favours ceafed from that quarter, and obliged him to return to the lycæum or fchools of Athens, which were now, given to him by the magiftrates, that he might fill the chair of the deceafed Plato, to which he foon had a famous concourfe of fudents. After this, the difpleafures of Alexander wore
off, and by degrees turned into munificent prefents and affiftances, that greatly conduced to the perfection of philofophy, and the completion of Ariftotle's ample works; which have been fince made the ftandard of philulophy, through all ages, as thofe of Hippocrates were for phyfic, until the beginning of the laft century, when the face of both received a prodigious metamorphofis for the better, by a difcovery of the circulation, and a chain of improvements in mechanical knowledge. The works of Ariftotle were left at his death to his difciple Theophraftus, with a charge never to publifh them. The executors of Theophrafus buried them under ground, and after they had fo lain near a couple of ages, they were found diverfely, bought and fold, and in great danger of perihhing, until Andronicus of Rhodes, a little before the appearance of chriftianity, got them fair copied, and difpofed in good order : from which time, the doctrines of Ariftotle flourihed, and gradually fpread at Rome, under all the Cæfars, and feveral of their fucceffors. The church, indeed, at firf fufpected them of too mach libertinifm, until St. Jerom, and St. Auguftin, cleared them of it. In the fixth age, Bœtius turned him into Latin; and in the eighth century, Damafcen commented him, and reduced him to an abridgment. In the dawn of the 13 th age, his works being abufed to countenance wicked opinions, caufed the church to fupprefs them, until they were again approved and reftored to the univerfities of Europe by pope Urban V. in 1366 and Nico-
las V.in 144^{8}. fince whenthey have reigned univerfally, down to the middle of the laft century.
2. Under the reign of the great Alexander, when all branches of polymathy were taught by the fame præceptor, and in tolerable perfection; his wife tutor Ariftotle feems to have firft made an offset of philofophy, from the other branches of the great polymathic tree, and likewife to have made a partition betwixt philofophy and philology; as Hippocrates had a few years before made a divifion of phyfic from them both. Pliny tells (lib. 8. c, 16.), shat at one time the munificent gratitude of Alexander to his wife mafter, devoted feveral thoufand perfons to his fervices in natural hiftory, and to the forwarding his voluminous works of philofophy; together with a fum, which (according to Athenæus Deipnofophiftus, lib. 9. c. I3.) appears indeed prodigious, in refpect to the rate of money at that day; viz. 800 talents, equal to about 500,000 crowns fterling. The laft author therefore obferves, it is no wonder that Arifotle fhould be able to raife fifty volumes, upon the hiftory of animals, from fo ample a fund of wealth, with the obfervations and helps of fo many correfpondents, throughout all the regions of Afia and Greece. Whatever advantages Ariftotle might make of anatomical fragments from his predeceffors (particularly Alcmæon, Empedocles, or even Democritus, and Hippocrates himfelf, who were but a few years before him), of which, however, there are no apparent figns; he was \%et certainly in as eminent a degree the prince
of philofophers, as Hippocrates was, in refpect of phyficians. The advances which the philofopher gave to anatomy, though chiefly comparative, are by no means inconfiderable; and although his books concerning the hiftory and generation of animals have, in many places, abfurdities, and even falfities, feemingly too grofs to be imputable to fo learned an author : yet our great Harvey thought his time well beftowed, both in reading and fudying of him, when he was employed on that fubject. Among other particulars, you may fee good hiftories of generation, by the egg and incubation (Hift. lib. 6. cap. 3.). In the next book, he gives a true defcription of the difpofition of the human fætus, and the gradual completion of the organized parts, fo as to be evidently the founder of the anthropogenetical fyftem, which implies a fucceffive organization and appofition of the parts, efpoufed by his no lefs admirer than corrector Dr. Harvey himfelf, and now more largely proved and explained by ourfelves, in the prefent compendium, §. 857 .
§. 10. As Hippocrates laid only the firt ftones of anatomy, fo his fyftem is proportionably the moft fcanty, and the leaft ufeful; whence his vifceral anatomy would fall much fhort of the compafs of a good fheet; but as he appears to have excelled in the knowledge and practice of furgery, at leaft as a director, fo his accuracy and anatomical fkill appear more amply and evidently extended, in his accounts of the bones, joints, \&cc. that have a nearer alliance to affiftances from the hand. As Hippo-
crates found it experimentally more inftructive to himfelf, and falutiferous to his patients, to remark the naked facts, courfes, and operations of nature, medicines, and difeafes themfelves, unmixed with precarious fpeculations from any philofophy; fo he appears no friend to any one theory, more than the evident and fenfible qualities of heat and cold, denfe and rare, folid or fluid, \&c. apparently connected to the objects under his enquiry. If this averfion to theory will not entitle him to any honour in founding the dogmatical or reafoning fect, we apprehend his fyftem has fuffered no material lofs by it, unlefs the philofophy of thofe times had been more perfect: or even if his great fucceffor Galen had altogether purfued the fame method, his works would have been doubtlefs as much more improved in their practical ufefulnefs, as in their brevity.
2. His practice was generally to leave the whole courfe of the diftemper to nature, under a due regimen, until fome very urgent fymptom or change called for his affiftance ; and then he as boldly attacked it by remedies, equally potent; fuch as exceffive blood-letting, ad deliquium, exceffive dofes of draftic medicines, that both vomit and purge, hot and cold bathing, cupping, unctions, clyfters, 8xc. In acute difeafes, he relied principally on plenty of emulfions, hydromels, grewels, and a watery diet, giving cordials when the heat feemed too low, and bleeding, bathing the feet, \&c. when it ran too high; patiently waiting for the concoction of the morbific matter, by the powers
of nature, and as diligently watching the outlets, to which it had a tendency, where he then always promoted the difcharge, if it feemed to require affiftance, from evacuants. He directs caftor and myrrb for hyfteric fits, fuppreffed menfes, and moft diforders of women. He gives vinegar in quinfies, and ardent fevers, with hiccups, vomitings, phrenzy, peripneumony, and pleurify: alfo for vifcidities in chronics, dropfies, external pains, inflammations, and cutaneous defedations, \&cc. Garlick for cold phlegm, and eryfipelas of the lungs. Alum to cure hæmorrhages, uterine difcharges, and procure conception. Spices for phlegmatic diftempers of women, and to promote the menfes. Recent ox-gall, to loofen the bowels, kill worms, purge children, relieve dropfies, \&c. Cantbarides in dropfies, and to provoke the menfes. Diet of onions in a jaundice, and to provoke conception. Long abfinencies from food, for the cure of dropfies, jaundice, diarrhæas, gouty or rheumatic pains, afthmas, and diforders of the lungs, or fpleen. Clyyters for pains, inflammations, and over-fulnefs in the head; dry, hot, and windy cholics, pains of the abdomen, womb, pleurify, fevers, pains of the loins, \&c. Concuftions towards replacing the bones; and to the difcovering of confined pus or matter. Cupping for pains in the head and eyes, bruifes, peripneumony, pains of the hip and other parts. Elaterium to purge bile, expel the fortus, or purge in cancers, ulcers, jaundice, fore-throat, \& cc. Frictions, with oil, to ftrengthen weak joints, and relax ftiff ones.

Cold-bath, for faintings and hyfteric fits, reftrain the menfes, prevent mifcarriage, rheumatic pains, \&c. but to be cautioufly avoided in diforders of the lungs and liver, tabes, \&c. Galbonum, as a uterine medicine, and an expectorant in a peripneumony. Funifer-berries, to provoke urine. He calls eggs lac pulli; and advifeth afes-milk in exceffive fluxes from the bowels, or womb; for flow-fevers, confumpti-ons-purulent, diforders of the lungs, gout, \&c. Lintfeed in wounds and ulcerations; and outwardly in emollient anodyne fotus's. Sower oranges, or fmelling-apples, in drinks for fevers. Meconinum for exceffive fluxes and pains of the uterus. Honey as a refolvent in fevers and phlegmons; as a pectoral in coughs, and a laxative in clyfers. Mint as a cordial and a ftomachic; for jaundice, and vomitings, \&c. Myrrb, for moft diforders of the ftomach, and menfes; and to cleanfe ulcerations in the mouth, gums, and other parts. Nitre from Ægypt (redifh, and more lixivial than ours), for quinfies, pleurifies; gouty and rheumatic pains; alfo to purge phlegm from the bowels, water in an anafarca; for fcirrhofities in the womb, or elfewhere. Origanum for cold-phlegm, dropfies, jaundice, \&cc. Ergs, their whites to be given in fevers, not ardent, in the drinks; and their yolks for coughs in children, exceffive uterine fluxes, \&uc. Poppy-juice for hyfterie pains, and convulfive diforders, hectic fevers, fluxes of the bowels, \&xc. The water from pitch or tar, and the pitch or tar itfelf, inwardly for ulcers, to expel water from the womb, \&uc.

Pepper, topically for the tooth-ach, and for cramps. Cerus of lead, for diforders of the eyes, fkin, and fharp ulcerations. Penny-royal, for fevers, and hyfterical diforders. Refin of turpentine, for inward ulcerations, and exceffive fluxes, uterine, \&cc. Rofe-leaves, for a diarrhæa, diabetes, and uterine relaxations. Elder-berries, to purge, in dropfies and uterine diforders. Scammony, root and juice, to purge in hip-gout, jaundice, nephritic complaints, \&c. Squill, to purge in uterine and pthifical cafes..--Tapping, for a dropfy, and empyema. Whey-drinking, for the cure of ulcerations, confumptions, fevers and gouts. Afla-fatida, for hyfterics, peripneumony, pleurify, jaundice, \&c. and in a larger dofe to purge bile. Sulphur, for ulcers, pulmonary and cutaneous diforders. Frankincenfe, for ulcerations, puerile afthma's, ftomachic and uterine diforders. Vence-Section, with a large orifice to relieve diftending pains of the head, eyes, throat, fides, oppreffions at the heart, and mouth of the ftomach, fuppreffed urine, $\& c$. but to be omitted when the pains are to be fuppurated, \&uc.
3. This may fuffice to give us fome notions of the chief articles in the materia medica of Hippocrates, with the ufes to which he applied them; and this, we fee generally in a conformity with our practice at the prefent day. His phyfiological and nofological fkill were fill much more fuperior. He had a happy readinefs and Charpnefs of penetration into the fate of a patient and his diforder, from all collateral fymptoms; by which, and from long obferva-

Progress of Pbyyology

tion, hê wàs almoft infallible in his prefages of their crifes, turns, and future events. In points of furgery, himfelf and his Latin imitator or tranferiber, Celfus, have both of them performed to a wonder: His morbid cafes or hiftories are fully and moft accurately ftated; and with fuch an imparttiality to truth and intereft, that few, if any, can be fince compared to him ; for he does not frruple to own the leaft circumftances of his unfucceffful practices: His aphorifms, englifhed by Dr. Sprengal, with his tracts upon regimen of the hon-naturals (elegantly turned into French by Sieur: A. Dacier, and in part englifhed by Dr. Clifton); afford not only the beft part of his prattice; but are filled with a fenfible philofophy, concording with the circulation, and able to endure the teft of the prefent and future ages; as you may fee plainly in the nervous, ufeful, and fevere tryals to which Dr . Gorter has lately fubjected each of his aphorifms, in point of found practice. V. Comment. in Aphor. Hippoc. Lug. Bat. 4to. 1740. \& feq.
4. He juftly, with ourfelves, divides the body into retaining folids ($\mathrm{a} \dot{\alpha}$ ' ${ }^{\circ} \sigma$ yovica), and in-
 he ranks the (ε voguüura) movers of the body and mind, now called nervous fipiris. He diftinguifhes the red blood from the yellow and watery ferum ; and obferves, that in the firft there is contained a fibrous fubfance, which being drawn out from it, the reft will not congeal. He appears plainly to have known the peripiration, exhalation and inhalation, that obtains through
through all parts of the body; on which Dr. Kaw (a relation of our great Boerhaave's) has given us a profeffed, elegant, and ufeful treatife, entitled Perfpiratio Hippocratica. And it is no lefs plain, that he knew the blood and juices had a circum rotation or return through the feveral parts of the body; although he knew not how or which way it was carried on, by the nature and organizations of them. See the remarkable paffage in lib. de infomniis, n°. 13. But fince either abridgments, or whole copies of oo confiderable an author, are in the hands of almof every one of the profeffion; inftead of further details, we refer them to the original ; of which the late Venice edition, 1737, tranflated by Cornaro, is the moft ufeful, to a novice or a bufy practitioner, on account of two indexes, each as big as the original work; which is here turned (1.) into a fyftem in alphabetic order, by Marinelli; (2.) a concordance, or index, by P. M. Pinus.
5. Only we hall by the way remark one thing furprifing to fome, why in the midft of fo accurate attention to all the other figns, both diagnoftic and prognoftic, that are at this day regarded by the greateft phyficians all over Europe, Hippocrates fhould have taken fo little notice of the pulfe, as barely to mention it in a very few places. To this we anfwer, that his clofe repeated and ingenious obfervation of refpiration *, (now commonly as much neglected, as the pulfe was by him) in regard to its magnitude, frequency, ftrength, facility, soc. with their degrees and oppofites, howed both
both to his eye and ear, all and more of the fame inftructions than he could learn from the pulfe; which being only a confequence of the former, and of the fame import, eafily fluctuating or deceptive in various parts, and under various influences, he often neglected it as lefs to be trufted, and not fo apt to furprife or found his fame in predictions: although he has left us enough to fhow, that he confulted the pulfe of the arteries, as a fign in all fuch cafes as he judged to require it.

REMARK.

* Here I muft confefs, that although I cannot aquiefce with the learned Dr. Nicholls, in his late elegant prelection de animar medica, Lond. 4to. 1750. in allowing the mind any other operation upon the body than what is re-actional, directive and conformable to the impreffions which the body itfelf, firft organized, conveys to her, fo as to determine her re-action, which in confcious changes we call the will ; yet I muft own, that an afterthought, upon what in my younger days feemed an abfurdity, has made me admire the wifdom of the ancients, in giving the fame name to the diaphragm (φ gives), which is ufed to denote the mind, of whofe various fates or conditions it is no lefs an index than to thofe of the body. For this part is actuated by the common fpring of nature, the atmofphere, at the birth, before there are any powers of will, to which it afterwards pays certain degrees of obedience. This part appears to be the regulator of the heart; and by that alfo of the encephalon, and by both of the bodily affections or impreffions upon the confcious mind ; and this even on the firft day of birth, long before fhe has any confcious determinations of will; and on the laft day of life, long after both will and confcioufnefs have ceafed: fo on the
other hand, the re-acting mind returns her operations primarily and principally by the nerves of there parts, to the reft of the body, in producing all the morbid affections, afcribed either to elevating, or depreffing and forrowful, paffions of all kinds. Hence the natural languages; or vocal clamours of all animals immediately refult, expreffive of their then confcious ftate, to any ear they can reach : for as the mere tones of voice, conformed to the intentions of the will in man, are able to exprefs different fenfes by one and the fame word, fo there is hardly an obferving perfon, but what can readily determine, if they hear the voice either of man or beaft, articulated or not; whether it arifes from a paffion that is forrowful, joyous, or indifferent: for whenever the mind, has fo far deferted the fociety of the body from any infirmity thereof, as to be incapable of paffion or will, the can return no effects of them upon the body, and confequently can return none of their effects again by the voice or other actions of the body. Hence there is an elegant paper in one of the philofophical tranfactions, intimating the way of judging people's general and prefent difpofitions, both of body and mind, by the natural and common keys or tones of the voice. But to trace this matter through man, and other animals in general, is a fubject indeed curious, ufeful, and elegant, but too long for this place.
§. XI. After Hippocrates had made phyfic a liberal and diftinct art, to be further perfected by obfervation and practice, his works continued, making fome improvement in the hands of his fucceffors, the Afclepiads, or defcendants of effculapius, until about the dawn of chriftianity, both the original and the additions were accurately digefted and improved into a kind of
new fyftem, by a learned Greek; named Arf. TIEUS Cappadox, in four books, entitled, Comcerning the caufes and figns of acute and coronic difeafes; of which the Oxford edition, by Dr. Wigan and Mr. Mattaire (fol. ${ }^{1} 723$), is as near good as any fince made. This phyfician, who feems by his writings to have practifed at or near Rome, has given us more exact and beautiful hiftories of difeafes, than are to be found in the reft of the ancients; and his methods of cure are proportionably more elegant; but unfortunately the whole is in many places imperfect, by the lofs of whole chapters. He feems to appear with all the fuperiority over Hippocrates that time and collections could afford him; and is not equalled, either in method or elegance, by any writer after him. He is the firft that applied cantharides for the ufe of blifters; he ufed bleeding ad deliquium in a quinfy, and applies much to the mafculine practice of the Romans, by diet, exercifes, bathings, fweatings, fomentings, \&c. But his elegant defcriptions are moft valuable, becaufe juft, compact, in one continued narrative, and placed in a good order. The like we may fay of the Latin Hippocrates, Celsus, who wrote foon after him, in a choice Roman diction, equal to the majeftic and elegant Ionic dialect of Aretæus's Greek. Therefore if we add thefe to the learned expolitor of Hippocrates, Galen, who flourifhed foon after Celfus, and in the fame great city, we fhall hardly meet with any writers worth notice afterwards, unlefs it be Trallian, down to the end of the 15 th cen-
tury; or even in the following 16th age, little more was done than varioully cutting and carving, contracting or dilating the doctrines of thofe fathers, after divers forms and manners. Of Celfus, you may confult the Padua edition, Svo. 1746. in which are contained Morgagni's elegant obfervations and remarks *, in five or fix epifles.

$$
R E M A R K
$$

* Thofe who are curious to trace the fteps by which medicine has defcended from the hands of Galen, into our own, at the prefent day, may compare him, or his abridgment, by Lacria, with (I.) Jacobus Sylvius, Parifian profeflor; then (2.) Riolani opera, fol. Par. 16 ıo. $\&$ feq. (3.) Sennerti opera. (4.) Riverii opera. (5.) Etmulleri opera, (6.) Hoffmanni opera. (7.) and laftly, the theoretical and practical courfes of our late illuftrious European 2 fifulapius, Boerbaave; the former given us by Dr. Haller, re-printed with the text, in feven volumes 4 to. Ven. I744, and the latter half publifned, and now on the anvil, by Dr. Swieten, at the imperial court ; to which add the works of his diligent and well commended fcholar, Dr. Gorter.
§. XII. The great luminary of medicine, Galen, whofe works have eclipfed all thofe of his cotempoaries and fucceffors, down to the times of Harvey, flourihed at Rome, during the latter part of the fecond age of chriftianity, was by birth an Afiatic, or Greek, born at the city of Pergamus, fon to the expert mathematician and architect, Nicone, an. Chrifti. 13 I. After compleating his fitudies at Alexandria, he began his practice, at the age of 34 ; and foon c 2
aiter much admired and voluminous works, filled with learning of all kinds. He afterwards returned into his own country, but was foon recalled to be chief phyfician to the emperors Antoninus Pius, and Verus: after whofe deceafe, he retired again into Afia, and there died in an advanced age. Galen has fupplied to us the common fountains from whence the phyfiology of the human body has been taught, for near fifteen ages after him, down even to the times of Harvey; and although he is generally tedious in his expreffions, often unfettled in his opinions, and frequently gives us confufed intermixtures, by tranfcribing both the human and comparative anatomy, intermixed together; yet he is fill a very deferving and profeffed anatomift, the laft of the Greeks, the moft eminent of all the ancients, and far from deferving many of thofe aggravating refiections thrown upon him by Vefalius; more efpecially that of having never traced the human body itfelf, by his own labours; the contrary of which is evident, throughont his book de ufu partium ; and from the paffage (lib. 3. cap. 2. de comp. med.), where he tells us, the bodies of barbarians, killed in the battle of Mark Antony (an. 174.), were given for diffection to the Roman fhyficians. We are probably obliged to Galen for the works of Hippocrates himfelf, no lefs than for many remarkable paffages of the ancients, that are not elfewhere to be found. In his faid treatife on the ufe of the parts of man's body, he evidently defcribes the foramen ovale,
canalis arteriofus in the fcetus, the true courfe, of the blood through the lungs, with the ufe of the valves, \&c: he has left us alfo a number of autographical defcriptions, and experiments on living animals, no lefs ufeful in phyfiology than practice; in which laft he appears throughout truly the great man in all his works, which with thofe of Hippocrates and Celfus, will ever continue to be a pleafurable and inftructive entertainment to all who have judgment, time, and ability to read them. Galen's books concerning the powers of fimple medicines, have been tranfcribed, with but little alteration, into Oribafurs, 压ius, and Paulus 压ginita; and they alfo form the chief part of what the Arabians have afterwards given us upon the fubject of fimple medicines. His diftinctions of the various kinds, caufes, and fymptoms of all difeafes; particularly fevers, fhow the penetrating depths of his genius, above any of his predeceffors; and his perfect acquaintance with the philofophy of Ariftotle, that then flourifhed at Rome. His fix books concerning the knowledge of the feats or parts affected, in difeafes, are both valuable and admirable, beyond other parts of his works, of which they were probably fome of his laft; and are preferable not only for their good method, and more compact diction, but for the juinefs and validity of the diagnotic figns, propofed for difcovering the more obfcure difeafes, and for the many obfervations he has given us from practical anatomy. Nor are his merits lefs in prognoftics, than femiotics : only we muft difregard the ufelefs ex-
ceffes, to which he has, in complaifance to Ariftotle, extended the peccant qualities of humours; and the endlefs variety of pulfes, that are not perceptible to the niceft and moft experienced touch. His three books upon the natures or powers of aliments, have continued the ground-work of all that has been faid on diet by his fucceffors; and his difquifitions into all the kinds of foods, with their relations to an eafy or difficult digeftion in the fomach, fhow the greatnefs of his judgment, and the extent of his experience; which are both of them ftill more confpicuous in his fix books upon the prefervation of prefent health; in which, befides the aliments, he confiders their relations to the feveral ages of man, from the birth and upwards, advifing, in conformity to the age, fuitable exercifes, frictions, bathings, evacuations, wines, and foods, contrary to the morbid difpofitions. Of thefe books, formerly Sanctorious, and latterly Sir John Floyer, have made a very good ufe both in their practice and writings. Sir John tells us, that Sanctorius made his great difcoveries upon the important Subject of peripiration, from reflecting on the following paffage of Galen's fixth book de fanitate tuenda. Agrotare autem folent zel bumorum vitio, vel redundantia. Ubi igitur quod exbalat à corpore minus efo iis que accepit; redundantice oriri morbi folent. Quare propiciendum eft, ut corum sue eduntur F_{O} bibuntur refpectu corum que expelluntur, fervetur conveniens mediocritas. Servabitur fane is modus fi ponderetur ian nobis utrifque quantitas. Et
porrò de mutrimenti, vel quantitate, vel qualitate, vel etiam utraque detrabimus. This by the way may ferve as one inftance, how ufeful a cool reading of the ancients may be in the hands of able profeffors, even merely to excite a fpirit of invention, and afford difcoveries, which perhaps the ancients themfelves were very little acquainted with. As for furgery, it muft be owned Galen falls very fhort of his predeceffors, Celfus and Hippocrates: and indeed he feems to have been not very fond of it, when he tells us, that " as an emperor muft fometimes go " and fight himfelf for a foldier; fo a phyfician, "s in cales of neceffity, muft make ufe of his " hands." However, he has largely enough treated upon inflammations, tumors, wounds, uleers, blood-letting, cupping, fcarification, \&cc.
§. XIII. 'Tis univerfally allowed by all good profeffors, that Hippocrates, Ariftotle, and Galen, form together a triumvatic fyftem of the ancient anatomy; which, if digefted would even at this day make a very formidable appearance, and go near to equal the moft conilderable additions that have been fince made by others, even down to the arifing of the three greateft luminaries of modern diffection; viz. Vefalius of Paris, Euftachio of Rome, and Harvey of London. But thofe who through choice or incapacity defire to be difencumbered with the volumes of the triumvirate, may reft fatisfied with a marginal abridgment of them, that attends the anatomical fyftem of Cafpar Bauhin*,
* Cafpari Bawhini Theatrum anatomicum Francoforti : 22 I . \& 16ヶ0. 4to.
which, joined with the faid luminaries, and the tracts of accurate Riolan *, will very well bring down the ftate of anatomy to the midft of the laft century; and then the laft edition of Bartholin +, joined with that of Verheyn \ddagger, will reduce it to the dawn of our prefent age.

2. Thofe who defire to be acquainted with fome of the principal matters contained in moft of the Greek and Latin writers, who followed after Galen, down to the reftitution of learning by the art of printing, in the midft of the 15 th age, may confult Dr. Freind's hiftory of phyfic, for that period. For in reality, the additions made to the art of healing in that interval, are fo inconfiderable, that if we except half a dozen writers, the reft may be over-looked without any fenfible lofs. Of thefe the firft confiderable author, contemporary with, or near to the time of Galen, is Coliuus Aureliauus, Siccenfis ex Africa, in his eight books, de morbis acutis \& chronicis, 4to. Amftelod. 1722. who is not only juft in his figns and defrriptions of

* Riolani Archiatri Enchiridion Anatomicum cum differtationibus adjectis. 8vo. Paris. 1658. Animadverfiones Anatomicæ, 4to. Lond. 1649 .
\dagger Thom. Bartholini Anatomia quinta vice ad circulationem reformata Lug. Bat. 1686.
\ddagger Philippi Verheyen Anatome, Lovanienf. 4to. 1693. without which fyftem, you will meet with the gold picked from the drofs, in Dr. James Keill's anatomy of the human body abridged, 12 mo . Lond. 1698. or rather Dr. Drake's Anthropographia; in which you have alfo many of the figures and obfervations of the ingenious Mr . Cowper.
difeafes, but has preferved to us many fignificant fragments, from the ancients of his day, that are otherwife loft to us. Among other particulars, he takes notice of the hæmorrhoides or piles, in the coats of the bladder, that bleed periodicaliy, or at uncertain intervals; and is a cafe that occurs fometimes in our days, no lefs than his. Oribafius, of Pergamos, who flourifhed phyfician to the emperor Julian, in the midft of the fourth age; was a pagan, like his mafter, by whofe order he gathered feventy books, under the name of collects, from the moft eminent ancients; of which only the firf 15 , with the 24 th and 25 th, are preferved to us. Phyfic appears thence to be already cegenerating, at leaft with Oribafius, towards recipe and fuperftition. However, he has many pertinent fragments of the loft ancients; and the difeafes, of which he is the firft defcriber, may be feen in Dr. Freind. Retius Amidenus, who next flourimed in the clofe of the fifth age, one of the firft among the chriftian phyficians, is more ample than Galen, in refpect to furgery. He highly commends and defcribes feveral kinds of cauteries; and ufes fcarifications of the ancles in dropfies. He treats of blood-letting, finapifms, clyfters, peffaries, the bites of animals, herniæ, abfeeffes, fcirrhi, cancers, and enceyfted tumors. He has freely compiled from his predeceffors, and tranfribed almoft the whole of Oribafius, upon fimple medicines, into his fecond book. But in points of furgery, he appears much fuller than Oribafus; although he fubjoins an infinite number of recipes to each diftemper, with long details
details of their virtues; which are plain indications of the idle, ignorant, and fuperftitious condition into which the art of healing was then about to dwindle; together with the language and the other learning of the empire. Alexander Tralian of Lydia, in the leffer Afia, flourihed in the midft of the fixth age, under Juftinian; faid to have been a good chriftian and phyfician to St. Leo the great: though one of the laft in order, is the frut upon the line of merit, next to Galen. For he has given us a concife, juft, and fyftematical defcription of all difeafes and their medicines, from head to foot; but without including iurgery, or the difeafes of women. In his practice or curative part, he has greatly excelled both Hippocrates and Galen; he fubdues quinfes by repeated bloodletting, an hrmoptoe, by bleeding in the foot, coolers for eryfipelatous fevers, worm-wood for baftard-tertians, \&c. He is one of the firft that commends bleeding in the jugular; and remarks the aftringent virtues of rhubarb, \&cc. A compendium of him may be feen in Englifh, by Dr. Milward; Lond. 8vo. 1734. Tralian quotes his predeceffor Ftius, as he himfelf is quoted by his fucceffor, Paulus Ægineta, in the clofe of the feventh century. Agineta is the laf upon the Greek lift, and has fupplied the parts of furgery, and midwifry or difeafes of women, which Trallian had omitted, and from whom in moft places he has largely tranfcribed. His defcriptions of difeafes are compact, and taken chiefly from Galen and Oribafius. You have his works in Latin at Paris, 1532 , fol. and from
the prefs of Aldus at Venice, with notes, 8vo. I553, and 1554 .

3. After the Roman language and arts had been ruined in Italy, by the Lumbards, and thofe of the Greeks much declined in the eaft, about the clofe of the fixth age; foon after there arofe a crafty impoftor, Mahomet, who in the beginning of the feventh age, endeavoured to fupprefs learning and arts in others, the better to eftablifh his own empire and fuperftitions; although at the fame time he is faid to have known fo much of medicine himfelf, as to write a book of aphorifms. He and his fucceffors removed phyfic, with the fchools from Alexandria, among the falfe priefts and prophets of their own tribe, to cities called Harran and Bagdat; and after carrying their empire with the rapidity of a a torrent, over moft parts of Perfia, Arabia, 屁gypt, Afia, Paleftine, and Africa, they tranflated what was thought valuable of the fciences, into their native Saracen, or mixed Arabic language, and foon fuffered both the firft fountains, and the learned languages, to perifh in favour of their own. In the beginning of the eighth century, they became mafters likewife over a great part of Spain, where their Muffelmen alfo obliged the remains of the fciences to fpeak their own dialect. Phyfic rather lofing than gaining in the hands of the Arabs, however maintained its bulk, and gained fome things, while it loft others; particularly their own practice, often lead them to milder and better medicines, than what had been uled by the Greeks; only by too
much
much neglecting the Hippocratic knowledge of diftempers themfelves, they ran almoft entire into the Galenic forms and compofitions. Among thefe flourifhed Seration, in the clofe of the eighth century ; John of Damaicen in the midft of the ninth; Rbazes, prafect to the hofpital of Babylon, in the dawn of the tenth age. His works fhow him to have been one of the greateft Arabian phyficians, as they make a confiderable folio; Bafil. I544. and include all branches of phyfic and furgery, with many things new, and ufeful in each : here we have mercury fublimate, and many other chemicals, a proper defcription and cure of the fmall-pox and meanles, \& cc. At the clofe of the tenth age, Haly-Abbas gave a full compendium of phyfic. In the dawn of the inth age, Avicenna, of Buchara, or Ufbec in Tartary, who has compiled a large fyftem from the Greeks. Avenzoar was a Spanifh Arab, native of Sevile, and prefect of the hofpital there, in the 12 th age : contrary to the cuftom of the time and place, he practifed both furgery and phyfic, together with great judgment and fuccefs, and has left many good obfervations, rare cafes, ufeful and new medicines, \&cc. fol. 1496. \& feq. Venetiis. Averroes was alfo a native of Corduba in Spain, a fubtle Ariftotellian ; but afterwards taught, and died in the city of Morocco, an. $1: 66$. leaving nothing remarkably ufeful in his works. After him followed Mefue, who excelled in the Galenic pharmacy.
4. The Arabian phyfic, was, in the clofe of the ! th age, put into a Latin drefs, by Con-

Atanus the African, of Carthage, who is faid to have lived 39 years in the city of Babylon. He in the year 1087 , carried it to Salernum, by Naples, the firft and oldeft fchool of Italy; where he left his feven books de Morborum cognitione \& curatione; the manufcript of which is faid to be ftill kept at Vienna. He afterwards died at Monte-Caffina ; and his works were printed, Bafil. 1536. \& 1539 . fol. This Schola Salernitana, is the oldeft for phyfic in Europe, and grew up from an unknown origin, 'till it got a confiderable name in the midft of the I Ith age, by fending rules of diet in verfe, for our prince Robert, an. 1060, fon to William the conqueror: and in the clofe of the I2th age, it got the name of the Hippocratic college, configned from abbot Joachim.
§. I4. As the reviving arts in general began to lift up their heads in that quarter of Europe, which we call Italy; fo phyfic and anatomy made their more early and confiderable appearances in that country, efpecially the fchool of Salernum, by Naples, before they travelled on to France, Germany, and Britain. The firft dawnings of anatomy were probably in $\mathrm{Si}-$ cily, under the emperor Fred. II. who at the clofe of the 13 th age, erected Sardinia into a kingdom, for his fon Ellzo, who died under confinement at Bologna; for he enacted a law, that none fhould be allowed to practife in furgery, who were not diffectors in Anatomy: but his firft phyfician, Martian, got leave to reduce it to a public adminifiration, every five years, at which all phyfocians and furgeons were to
their attendance. Soon after this, Mundinus became fo celebrated a profeffor at the univerfity of Bononia, in the entrance of the 14 th century (where anatomy had been taught for an age and a half before him), that a public law was obtained for obliging all doctors in Italy to lecture out of no other book than that publifhed under the name of Mundinus, at Bononia, in the year I315; in which, however, as well as his commentator J. B. Carpus, there is fo much rufticity, both in the dietion and the defcribed matter, that the book has little to recommend it, more than its antiquity.
2. But in the midft of the faid $14^{\text {th }}$ age, flourifhed Guido de Chauliac, who being in holy orders, was no lefs chamberlain and chaplain, than principal phyfician to feveral pontiffs of the holy fee; but is much more confiderable for his writings in furgery, than for the collected abridgment he has left us upon anatomy. He was an eye-witnefs to the general plague that invaded, not only Italy, but all Europe, in the year I 348 ; and of which fo many died, here at London, that in the faid year 50,000 were buried in the church-yard of the charter-houfe only: which plague he afterwards deferibes in his works, wrote in 1363 , at Avignon (which had from the year of the faid plague, been made a retirement for the pontificat), under his mafer Urban the V. who is himfelf faid to have been the fon of an Englifh phyfician. In the days of Guido, furgery had been fo far loft, that the beft profeffors in Europe, four of whom were in the
facerdotal order, farce knew how to treat a fimple wound. Rogerius of Venice, and Roland of Parma, knew no better than to poultice them with a few herbs, mixed with wine and honey ; Bruno of Padua, and Theodoric, bihop of Cervia, relied upon fweet wines, mixed with reffringents; Salicetus, profeffor of Verona, and Lanfranc of Milan (who wrote his works at Paris, in the end of the 13 th age), preferred the ufe of fweet-ointments and plafters; nor is any thing better propofed by John of Gaddefden, under king Edward II. and III. in his Rofa Anglica; but the Germans treated their wounds by charms, and mixtures of oil and cabbage.
3. Guido being a man of letters, one of much reading, and affifted by the pontifical libraries, took upon him to relieve this dearth of chirurgical knowledge (that had prevailed, from the time when medicine pafted, from Paulus 压gineta, into the hands of the Arabians, at the clofe of the fixth age, among whom it lay buried from Europe fix ages more), by recollecting the operative parts, as far as they had been treated in Galen, FEgineta and the Arabians; not neglecting what he thought ufeful in his cotemporaries, Theodorus, Salicetus and Lanfranc. The former, Theodorus, though averfe to all operation, had recommended turpentine as the beft application, for wounds of the nerves; with a double ligature, upon the artery, to be divided, for fuppreffing an hæmorrhage. Salicetus had approved futures for wounds of the abdomen. Lanfranc had treated
on the operations for the ftone, hernix, and dropfies; although tapping the abdomen for the laft, he fays, was aiways fatal in the end. He firft condemned the ufe of tents, and advifed futures of tranfverfly wounded tendons, in which Theodoric had been timorous.
4. Guido, however laudable in his writings, and experienced in his practice, is not to be commended for ufing futures in lithotomy, and caftration for the cure of hernix. He both ufed and defcribes the trepan for wounds of the brain, while others trufted only to topicals; he ufed futures of the tendons, with good fuccefs, and defcribes a great number of inftruments for various purpofes; and among them are forceps for the tying up of arteries, \&cc. From all which he has defervedly gained the repute of being an Hippocrates, or reftorer of furgery to Europe; alfo the firf that feparated or planted off furgery from phyfic, reduced it to a diftinct fyfrem, and confirmed it by his own repeated obfervations and experiences; whereas the offfet of pharmacy, is much later.
5. Some time after Guido, men of letters began to perceive the merits of Hippocrates, Celfus, and Galen, above the Arabians; who had been as yet the fore-keepers and retailers of learning, from the feizure they made of it, together with Spain, in the dawn of the eighth century, even down to the 12 th and 13 th age, when by retaling the Greek learning in their own drefs at Toledo and Corduba, they acquired great fame, by a conflux of tudents from. the other, at that time ignorant countries of

Europe; where the returning ftudents appeared fo much more learned than their neighbours, as gave occafion for a rumour, that Dæmons profeffed and taught the arts, about thofe cities of Spain, where even block-heads might become learned for their ftipend.
6. From thefe ancient Moorih univerfities of Spain, aftrology, phyfic, and chemintry were learned and carried into France, by Arnoldus de Villanova; and by Peter d'Albano, to Padua, at the clofe of the I3th age. But they no lefs than our Oxford R. Bacon, fuffered for their extraordinary knowledge, by the popular, but unjuft imputations of dealing in magic or forcery.---During the fourteenth century, arts and fciences made very inconfiderable advances in Europe, until the refugee Greeks, expelled from their metropolis, by the Turk, and the difcovery of the art of printing in the midft of the 15 th age, revived the drooping fpirits of Minerva, and amply diffufed true and ufeful knowledge through all the veins of Chriftendom. The Greeks having opened the learned treafures of their country in Italy, they were foon fent abroad at an ealy rate by printing, both in their primitive, and in the Roman drefs. Celfus came out at Florence in 1478 , and at Milan in 148土. Arifotle and Theophraltus at Venice, under Aldus, in 1499; and foon after, from the fame prefs, came Diofcorides, Galen, Hippocrates, Paulus, \&xe.

In the dawn of the Ioth age, fome of the marper wits, who had digefted upon the fathers of learning, began to perceive, that al-

[^3]brutes. His figures of the brain are the firft that can bear infpection. He is the firft that figured and defcribed the valvula pylori, with the finial lymphatic glandules behind the æfophagus, and the epiploidal or fat appendices of the colon. It muft yet be owned, that the courfe of the arteries and veins, as figured to us by Veialius, and copied by his fucceffors, are as defective as any part in his book; and fall infinitely fhort of the Euftachian accuracy. The fame may be faid of him in refpect to the genitals of the female, which he copies chiefly from brutes, as well as the kidneys. His diffections of the eye, are from catte; and his perfeverance in afferting a feventh mufcle that is in them, to be alfo in the human eye, after being admonihed by Fallopius, is both obftinate and egregious; as is alfo his denial of the optic or blind pore in the nerves, \&oc.
§. XVI. Barthol. Euftachio flourifhed as public profeffor at Rome, cotemporary with Vefalius, and has well merited the title of the prince of anatomifts, both ancient and modern. He learnedly refcues Galen from many wrong and malignant accufations of Vefalius, and fhows his deicriptions were of the human, and not of the monkey fkeleton; but in fome places is himfelf culpable of vindicating a falfity. He firft defrribes the tube, called after his name, with the bone ftapes; and in treating of the teeth, he has almoft quite exhaufted the fubject, and given us a fair fpecimen, how compleat a fyftem we might have expected from him, had he been healthy and able to have gone through
through it. In his pofthumous tables, which will ever remain the mafter-piece, betwixt ancient and modern anatomy, he gives figures of Ikeletons, much more correct than thofe of Vefalius, only rather too fmooth, or from too young fubjects; to which he has fubjoined fe-, parate views of the mof difficult bones, from a difmounted fcull; the multiform or fphenoidal bone is elegant, and in the upper jaw you fee the antrum afcribed to Highmore, and largely noticed by Mr. Cowper, in the fyftem of Drake. Euftachio gives us many fyftematical tables of the mufcles, truly drawn from nature, and difpofed according to their ftrata or fituations, from the furface to the bones of the body; thefe he propofes as a continued critic upon the more defective tables of Vefalius; and has in many parts rivalled the fuppofed difcoveries of Mr . Cowper, and other profeffed mufcular anatomifts of the prefent age, in the face, larynx, pharynx, ear, genitals, eyes, \&c. Thefe tables appear to have been formed on the fame plan, and with the fame induftry ufed in the late mufcular tables of Albinus; which are finifhed in the higheft perfection. He not only. reftores the heart to its natural and jut pofition, but alfo gives an elegant view of its proper arteries and veins, with thofe of the lungs, and his valve at the coronary vein. tab. I 5 , and 16. In his figures of the encephaion and nerves, thofe of tab. 17, 18, are incomparable, both for labour, correctnefs, and fulnef: and thofe following to the 24 th table, in which the courfes of the nerves amongt the bones and
mufcles are graphically viewed, continue the wonder of all wife anatomits, and as yet without a fellow; as are thofe of the blood veffels in the fame manner, while thofe of Vefalius, Willis, Vieuffens, Cowper, and others, drawn like the twigs of a tree apart from the body, are almoft a continued puzzle, either ufelefs, or but little inftructive. Since Euftachio excelled in the neurography, it has continued, and now remains the leaft finifhed of any branch of anatomy. He has reduced the œefophagus to its true figure and fituation, with refpect to the larynx, trachea, fpine, and ftomach; in which laft he fhows the difference of its figure, betwixt being full and empty, the ligaments that join its cardia and pyloris, the true courfe and figure of the duodenum, colon, liver, fpleen, and pancreas; with the mefentery, in which you have plain traces of the lymphatic or lacteal veffels, and their glands, which lead to the receptacle of the chile and thoracic duct, by him largely defcribed in his book of the vena azygos, or fine pari. His figures of the liver excel moft of the prefent day; and his varieties of the urinary paffages are as elegant, as their defcriptions are exquifite; as are alfo the parts of generation, with their blood-veffels, both male and female: for in the firft you fee the earlieft figures of the feminiferous tubuli, veficles, caput and oculi galinaginis, at the neck of the urethra, corpus cavernofum, $\& x$. His tab. 14. and I5. on the female genitals, fhow aftonithing induftry: for here you have the clitoris and its mufles; the fphincter, vagina,
hymen,
hymen, and vafa uteri in their perfection; with the communicant veffels of the round ligaments, uterine tubes, ovaries, \&c. He hows the uriniferous ducts and their papillæ, open into the pelvis; which laft he gives in its true fize and fituation, to correct what Vefalius had given us from brutes: the oblique entrance of the ureters into the bladder, without valves; the fituation of the right kidney, lower than the left, to correct the oppofite and current error ; and proves by ligature on the ureters, no urine can enter the bladder but through them. His exquifite figures of veffels throughout the body, are fuch as prove him to be acquainted with feveral forts of injections; as he in fome meafure indeed owns, by declaring water may be urged from the renal blood-veffels, into the pelvis and uretur. In tab. 39 and 40 . you have an elegant diffection of the buman eye, with all its parts; to correct the mifleading cuts given by Vefalius, from cattle. His defcriptions of the organs of hearing, are equally well known, as they are perfect. But his elegant plates lay loft to us 'till about 40 years paft; and have had no fignificant explanation, 'till one was lately given by his laudable imitator, Albinus.
§. XVII. But to cume nearer home, in the midft of the unlearned 13 th century, flouribed in the univerfity of Oxford, Roger Bacon, a francifcan, and fellow of Merton college, who by great ingenuity and experimental labours, penetrated not only into phyfic, but alfo the principal inftruments and operations of chemiftry, optics, and mechanics, to a degree that
fo far furprized the more philofophic part of the world, that they univerfally gave him the title of Dr. Mirabilis; while the more ignorant and fuperftitious part cenfured him for a diabolical conjurer, and by malicious accufations, procured him great troubles from his fuperiours, who were too eafily minled in his prejudice. After he had been cited for necromancy to the holy fee, by the fupetiour of his order, although he cleared himfelf by a profeffed treatife (de nullitate magio), his companions of the college always continued fo jealous of him, as to intercept every body from his converfation, and would allow his books no place in their libraries. Thefe and other difficulties, brought on him by the difciofure of fome furprizing experiments, unknown to the day, made him doubtlefs more referved in what he afterwards communicated by his writings; concerning chemical experiments, burning-glafles, gunpowder, mathematical inferuments, and optical lenfes, applied in the way of microfcope, telefcope, or magic-lanthom, \&xc. Wherein he fows himfelf to have anticipated his country in philofophic learning by feveral ages, in thofe of his manufripts, which make a choice part in the Bodleian library of Oxford. See Dr. Plot. Hift. Ox. c. 9. Freind's Hit of phyfic. vol. 2. Father Bacon laments the unlearned Rate of the clergy, univerfally feen in his day; and obferves, there were but three or four whom he knew meritorious of the title, wife, or learned in Europe, among whom he reckons

Villanova, whofe works were public at Lyons, fol. I520; and Dom. de Garbo, whom he terms the doctor of experiments; and has left us a treatife de Cæna \& Prandio. Rome, 1545 . fol.
§. XVIII. From the time of the good friar, mechanical and experimental knowledge, which lay the only true bafis of medicine, made very inconfiderable advances; 'till towards the clofe of the fixteenth age, an illuftrious lord chancellor of the fame name, arofe as the great luminary, no lefs of philofophy, than of law to England. This great man firf boldly declared among us, that though he ought always to fpeak honourably of Arifotle, yet he muft in the main condemn his philofophy, as a bundle of infignificant and difputable notions, productive of no manner of benefits to human life: which he afterwards made appear by his own labours, in thowing the difference betwixt fpeculative and experimental knowledge in philofophy. Lord Bacon was born, fon to chan= cellor Nicolas Bacon, at York-houfe, in the Strand, I560, and was from his infancy remarkable for quicknefs of wit, and depth of penetration. Although he had been I9 years chancellor, he died at laft fubffting on charity, at the earl of Arundel's, High-gate, 1626; and was buried at St. Michael's, near St. Alban's, from which town he had his title of baron. The additions made to the fciences, as well as to phyfic and philofophy, by this great man, are too numerous and well known for us
to infift upon here, fince his learned and extenGive works are now become a material part in every good library. But his Atlantis, defcribing a collegiate body of wife men, labouring each in their way to promote natural knowledge, is the more remarkable; as it excited the learned, and gave birth not only to our royal fociety, but to all the like academies of Europe; in which learning has by their means been fince raifed to the higheft points of perfection. While lord Bacon was improving experimental knowledge in England, the like works were carried on by Gallileo in Italy, whofe fcholar Torricelli invented the barometer ; and by the difquifitions of Merfennus, in France: but as for M. des Cartes, in the Low Countries, his nobility and mathematics only ferved to make him more infamous as a philofopher ; fince deferting the rule of plain reafon and jurt experiment, by which he propofed to erect his fyftem, he has only buried himfelf and his followers in a cloud of idle abfurdities, that too long blinded moft of his French neighbours, to the light of a better philofophy. Gallileo was native of Florence, profeffor at Pifa, and aftronomer to the grand-duke de Medicis; after whofe name, be called the fubfidiary little moons that he difcovered, revolving about Jupiter, Satellites Medicei. After the ice had been once broken up by lord Bacon, many able heads and hands cheerfully fucceeded him in extending and clearing the channels of fcience; among whom the honourable Mr. Robert Boyle,

Boyle, and fir Ifaac Newton appear the earlieft and moft confpicuous upon the lift: infomuch, that at this day, a philofopher is faid to be no where able to make a better repaft, than from a dih of old Englifh Bacon, well Boyled, and carved out by Newton. The advantages that have enfued from the mechanical philofophy of this laft gentleman, in all arts, fciences, and occupations of life through Europe, before and after the clofe of the lait age, would alone fill a very large volume; and fince Dr. Keill and others have in a feries of fifty years paft brought down his fyftem by experimental courfes, to be the plain object of our fenfes, no lefs than of our intellectual reafonings, the ftudy of his philofophy is become equally a pleafing amufement, as an improving inftruction, even to the weake!t ages and fexes.
§. XIX. But our own profeffion has of late years received no lefs improvements, than philofophy herfelf. For while the laft was advantageoufly laid out upon the anvil, by lord Bacon, a man equally great in the line of Æfculapius, ftruck a new and unextinguifhable light to phyfic in all her branches; by enabiing us to underftand the manner, operations, and effects of the circulation of the blood; the main fpring of all the various motions in the living body, and the only key to all the changes that can happen in it, either under the inAluences of healch, aliments, medicines, or difeafes. This important difcovery, after it had been fome years made, privately taught, and by degrees Harvey *, was afterwards publifhed to the world, by a printed treatife in the year 1628 . Our Britih Hippocrates, who pulled off the blind-fold from phyfic, was born at Folkefton in Kent 1.576 , was afterwards fcholar in Dr. Cajus's

* Now as the Harveian doctrine of the circulation (§. XIX.), is the grand rule by which the knowledge and practice of phyficians in general muft be raifed, fquared, and modelled, through all future ages and nations; and as it is alone the true light that can guide us fafely and fenfibly through the whole phyfrological and nofological clue of medicine: we may prefume, that no lover of truth and mankind, will be difpleafed to fee here a tranfcript of fo many of the great author's own words, as will fuffice to give us a plain view of his difcovered circulation of the blood, through the heart and extreme parts of the body; which with fome other collateral hints, of great importance, have fince furnifhed a large part to this compendium, as we thall point out by occafional references to the fections; which will give a further explanation of each article. - After offering his enquiries for the public good, to the candid reception of his royal mafter, Charles I. whom he falutes as the true heart of his people; from whence the vital ftreams of truth, honour, juftice, clemency, liberty, and property muft flow through all coniderable members, to the mutual happinefs of himfelf, and downward even to the lealt individuals in the Britifis conftitution; he then begins by telling us the motives for putting the prefs to the labour of fweating in his writings.

Circulaico Harviana.

1. Cum multis vivorum diffectionibus animum ad obfervandum primum appuli, quo cordis motus ufum \& utilitates in animalibus per autopfiam, \& non per libros invenirem; plane rem arduam reperi, ut motum cordis foli Deo cognitum effe, poene cpinarer.—Tandem majori indies, ${ }^{2}$ difquifione, \&x diligentia ufus, multa viva introfpidendo, multifque obfervationibus collatis, rem attiaife, at ex hoc labyrintho me extricatum evafife, fimulque

Cajus's college, Cambridge, from whence he went out doctor, after having firf fpent about five years in the anatomical and medical emporium of that day, Padua, in Italy. After fome practice, his merits appeared in the great judgment of Charles I. fufficient to entitle him

Circulatio Harviana.

motum, \& ufum cordis, \& arteriarum, quem defiderabam, compertum habere me exitimabam. Ex quo non folum privatim amicis, fed etiam publice in prelectionibus meis Anatomicis, Academico more, proponere fententiam non verebar.-Tandem amicorum precibus, partim etians aliorum per motus invidia, hæc typis mandare publice coactus fui. viz. an, 1628. - Iam denique noffram de circuitu fanguinis fententiam ferre, \& omnibus proponere liceat.
2. Primum itaqua aperto pectore, \& diffecta capfula, cor immediate, obfervare licet, Cor aliquando moveri, aliquando quiefcere; effe etiam tempus in quo movetur, \& in quo motu defituitur.--In quiete, ut, in morte, cor laxum, flaccidum, jacet: In motu, erigatur cor, $\&$ in mucronem fe furfum elevet; fic ut illo tempore ferire. Undique contrabi, magis vero fecundum latera, ita ut, is longiufculum, \& collectum appareat.-Ex his mihi videbatur manifeflum ; motum cordis effe fecundum ductum omnium fibrarum conftrictionem ; fecundum ventriculos coarctari, \& contentum fanguinem protrudere; \& eodem tempore pulfus forinfecus fentitur \& contenci fanguinis protrufio cum impatu àconfrictione ventriculorum.- Neque verum eft, quod cor extentione fanguinem in ventriculos attrahere, fed dum laxatur \& concidit, fanguinem ab auriculis re. cipere.
3. Eo tempore quo cordis fit Syfole, (I.) arteriz dilatantur, pulfum edunt, \& in fua funt Diafole. (z.) Quando finifter ventriculus ceffat contrahi, ceflat pulfus arteriarum. (3.) Item fecta quavis arteria vel perforata, in ipfa fyfole ventriculi finiftri propellitur foras finguis ex vulnere cum impetu. - Ex his manifefum, quod arteriarum Diafole fiat eo tempore, quo cordis fyfole.-D Denique arteriarum pulfum feri ab impulfufanguinis è ventriculo finition, quo \& pulfum æmuları, five fint majores, vehementiones, trequentes, seleres; omnes snim thymam, quancianent
the guardian of his health; and during the fufferings of that prince, the doctor's perfon, writings, and eftates, bore proportionably a large fhare. His great genius at invention, and his anatomical fkill, were not limited to the heart and generation only; but equally extended

Circulatio Harviana.

\& ordinem fervant cordis pulfantis. Quare puilfus arteriarum, nil nifi impulfus fit fanguinis in arterias.
4. Præter hæc obfervanda funt quæ ad auricularum ufum fpectant, quorum duo funt auricularum, ventriculorum duo. Quatuor funt motus, loco, non vero tempore, diffincti. Simul enim amber auricule moventur, \& fimul ambo ventriculi.-Duo funt motus, unus auricularum, alter ventriculorum : qui fimul non fiunt; fed pracedit motus auricularum, \& fublequitur cordis; ut motus ab auriculis incipere, \& in ventriculos progredi videatur.Cum jam languidiora omnia, emoriente corde, inter hos duos motus, tempus aliquod quietis intercedit.-Sic prius definit cor pulfare quam auriculæ, ut auriculæ fupervivere dicantur; primus omnium definit pulfare finifter ventriculus, deinde ejus auricula, demum dexter ventriculus, ultimo (reliquis ceffantibus ultimo) in dextra auricula vita remanere videatur.-D Dum fenfim emoritur cor, videre Jicet, poft duas vel tres pulfationes auricularum, aliquando cor unum pulfum lente \& ægre peragere \& moliri. Ut hinc pateat quod in ventriculos fanguis ingrediatur, non attractione, aut extentione cordis, fed pulfu auricularum immiffus.- Sed \& præter hæc aliquoties à me obfervatuin fuit (pofquam cor ipfum, \& ejus auricula etiam dextra, à pulfatione quafi mortis articulo quiefcerent) in ipfo fanguine qui in dextra auricula continetur, obfcurum motum, \& undationem, ac palpitationem fuperfuiffe, tamdiu, quam calore imbui videretur. Tale quiddam evidentiffime, intra feptem dies ab incubatione, in ovo, cernitur. In eft primum ante omnia gutta fanguinis, que palpitat ex qua incremento facto, fiunt cordis auricule; quibus pulfantibus, perpetuo ineft vita. Tum etiam cordis corpus procreatur; fed per aliquod tempus albidum apparet \& exangue, \& immotum. Quinetiam in feetu humano vidi,
tended through the reft of the human fabric, that fell under his lectures, in the royal college of London, to which he was a liberal benefactor. But the rebellious devaftations under his poor mafter, were here equally unmerciful to the learned, as they had been to the political
world;

Circulatio Harviana.

sirca principium tertii menfis, fimiliter cor formatum, fed albidum \& exangue, cujus tamen auriculis fanguis inerat uberrimus \& purpureus. Unde auriculum, prius quam cor ipfum vivere, \& poft etiam emori.
5. Ego ex his tandem \& hujufmodi obfervationibus repertum iri confido, motum cordis ad hunc modum fierio --Primum fefe contrahit auricula, fanguinem contenrum, in ventriculum conjicit; quo repleto, cor fefe erigens, contrahit ventriculos, \& pulfum facit: quo fanguinem continenter protrudit in arterias; dexter ventriculus in pulmones per vas illud, quod revera, \& confitutione \& officio, \& in omnibus arteria eft ; finifter ventriculus in aortam, $\&$ per arterias in univerfum corpus. In iltis cordis motibus, fit portionis fanguinis è venis in arterias traductio, \& exaudiri in pectore contingit.--Motus itaque \& actio cordis eft ipfa fanguinis transfufio, \& in extrema ufque, mediantibus arteriis, propulfio; ut pulfus, quem nos fentimus in arteriis, nil nifi fanguinis à corde impulius fit.——Quibus viis fanguis, è vena cava in arterias, vel è dextra ventriculo cordis in finiftrum deferatur. Fifulam five arteriam, vel arterix analogon, aperte tranfmittere, tum vifu, tum fecta atteria (exinde fanguine fingula puifatione cordis profliente) oculis palam confirmari poffe con-ftat.-—Uti ex autopfia eodem modo è venis in arterias fanguinem pulfu cordis traduci, palam eff: que via tans patens, aperta \& manifefta, ut nulla difficultas, nullus heSitandi fit locus.
6. Huc ufque de tranfufione fanguinis è venis in arterias, \& de viis per quas pertranfeat, \& quomodo puifa cordis, tranfmittatur difpenfeturque. Nunc vero, de copia \& proventu iffius cum dixero; adeo nova erunt \& inaudita, ut verear, ne habeam inimicos ornes homines. Tannum cenfuetado, art femel imbibita doctrina - Ani-
world; fince, as the doctor affures us, they broke into his apartments during his abfence, and deftroyed thofe written fruits of his long labours and ftudies, that ought to have rendered perpetual honours to his immortal name, and fervices to all poferity. However, what he

Circulatia Harviana.

madverti tandem, venas inanitas \& omnino exhauftas, \& arterias ex altera parte, nimia fanguinis intrufione, difruptas fore; niff fanguis aliqua via ex arteriis denuo in venas remearet, \& ad cordis dextrum ventriculum regrederetur: unde coepi egomet mecum cogitare, an motionem quafi in circulo haberet: quam poftea veram effe reperi, \& fanguinem, è corde per arterias, in habitum corporis \& omnes partes, protrudi \& impelli, à finifri cordis ventriculi pulfu (quemadmodum in pulmones) \& rurfus per venulas in venam cavam, \& ufque ad auriculam dextram remeare; quemadmodum ex pulmonibus ad finiftrum ventriculum, ut ante dit̂um eft. Quem motum circularem eo pacto nominare liceat.-- Sic contingit in corpore, partes omnes
 foveri, vegetari; in partibus fangunem refrigerari, coagulari, \& quafi effoetum reddi; inde ad principium, videlicet cor, tançuam ad fontem reverti; ibi calore naturali, potenti, fervido, denuo colliquari; \& firitibus prognantem, inde rurfus in omnes partes difpenfari.- Ita cor principium vitx \& Sol microcoimi appellari meretur, cujus virtute \& pulfu fanguis movetur, perficitur, vegetatur, 8ε à corruptione \& grumefactione vindicatur, toti corpori fundamentum vitæ, aucior omnium.--His pofitis, fanguinem circumire, revolvi, propelli \& remeare, à corde in extremitates, \& inde in cor rurfus, \& fic quali circularem motum peragere, manifeftum puto.- Supponamus quantum fanguinis finifer ventriculus in dilatatione (quum repletus fit) contineat; ego in mortuo reperi ultra $弓 \mathrm{ij}$. Supponamus fimiliter, quanto fefe contrahit cor tanto minus continere, atque inde quantum fangunis in arteriam magnam protrudatur : (protruditur in Syfole enim aliquid femper, ex fabrica valvularum) verifimili conjectura ponere licet, in arteriam immitti partem quartam: ita in homine protrudi,
he has divulged upon the circulation through the heart, and the bufinefs of generation, are enough to fhow us the depths of his penetration, and the diligence of enquiry with which he always traced the fteps of nature, in every part of the body; as alfo of the ingenuity of his

re-

Circulatio Harviana.

protrudi, fingulis cordis pulfibus, fupponamus $\overline{3} \mathrm{~B}$ fanguinis, qui, propter impedimentum valvularum, in cor remeare non poteft.- Cor una femihora plus quam mille pulfus facit; imo in aliquibus, \& aliquando bis, ter, vel quater mille. Jam multiplicatis drachmis, videbis una femihora talem proportionatam quantitatem fanguinis, per cor in arterias transfufam; quæ major eft copia quam in univerfo corpore contingat reperiri. Similiter, in ove, aut cane, plerumque non continetur plus quatuor libris fanguinis; quod in ove expertus fum. In quavis propulfione proportio fanguinis exclufi debet refpondere quantitati prius contente, \& in dilatatione replenti; uti in contractione nunquam nihil vel imaginarium expellit, fed femper aliquid fecundum proportionem contractionis. Quare concludendum, fi uno pulfu in homine, cor emittat $\beta^{\beta} \beta$, \& mille fant pulfus in una femihora, contingere eodem tempore, libras it
 femihora transfufas (inquam) effe de venis in arterias.Interiam hoc fcio, \& omnes admonitos velim, quod aliquando ubericri copia pertranfit fanguis, aliquando m:nore; \& fanguinis circuitus quandoque citius, quandoque tardius peragitur, fecundum temperamentum, ætatem, caufas externas \& internas, \&z res naturales $8 x$ non naturales, fomnum, quietem, viCtum, exercitia, animi pathenata, \& fimilia.- Arterias autem nullibi fanguinem è venis recipere, nifi tranfmifione facta per cor, ex ante distis, patet. Quare, ligando aortam ad radicem cordis, \& aperiendo jugularem, vel aliam arteriam, if arterias inanitas \& folum venas repletas confpexeris, mirari non con-venit.--Hinc caufam aperte videbis, cur in Anatome tantum fanguinis reperiatur in venis, parum vero in arteriis; cur multum in dextro ventriculo, parum in finiaro; caufa forlan eit, quod de venis in arterias nullibi datur tranfitus, practical ufes. As his great difcoveries and doctrines of the circulation appeared plainly deftructive of the whole foundation and fabric of medical theory, as it then flood tottering on the fancies of Ariftotie and Galen ; it accordingly

Circulatio Harviana.

nifi per cor ipfum \& per pulmones.--Præterea hinc patet, quo magis, aut vehementius arteriæ pulfant, eo citius, in omni fanguinis hœmorrhagia, inanitum, iri, cor-pus.- Hinc etiam in omni lipothymia, omni timore \& hujufmodi, quando cor languidius \& infirmius, nullo impetu pulfat, omnem contingit homorrhagiam fedari \& cohiberi. --Hinc etiam eft, quod corpore mortuo, poftquam cor ceffivit pulfare, non pofft, vel è jugularibus, vel cruralibus venis \& arteriis apertis, ullo conatu, maffæ fanguineæ plus quam pars media elici. Nec lanio, fi bovi jugulum prius fecuerit, totum fanguinem exhaurire inde poterit. --Hinc omnis tumoris caufa (ut eft apud Avicen.) $\&$ omnis redundantiæ opprimentis in parte; quia viæ ingreflius apertæ, egreffus claufæ, inde humorem abundare, \& in tumorem partem attolli neceffe eft.--Hinc etiam contingat, quod, quoufque tumor incrementum capefcit. Ego è curru delapfus aliquantum, fronte percuffus, quo loco arteriæ ramulus è temporibus prorepit, fitatim ab ipfa percuffione, fpatio fere viginti pulfationum, tumorem ovi magnitudine, abfque vel calore vel multo dolore, paffus fum; propter videlicet arterix vicinitatem, in locum contufum, fanguis, affatim magis \& velocius, impingebatur. -...Hinc apparet, qua de caufa phlebotomia, fupra fectionem ligamus, non infra; quia per arterias impellitur in venas, in quibus regreflus per ligaturam præpeditur, ideo venæ turgent, $\&$ diftentæ impetu per orificium ejicere poffunt; foluta vero ligatura, viaque regrefius aperta, ecce fanguis non amplius, nif guttatim decidit: \& quod omnes norunt; fi vel vinculum folveris vel fricte nimis confrinxeris, tum non exit, quia fcilicet via, ingreflus \&t influxus fanguinis per arterias, intercepta eft fricta illa ligatura; aut regrefus liberior datur, per venas, ligatura foluta.- Amplius obfervandum, quod in adminiftrands
ingly foon met with violent oppofitions from the pens of feveral (otherwife learned and judicious) profeffors, who thought it but right, religioufly to proftitute their fenfe and reafon to the blind authorities of thofe fathers.' Thus Riolan, and others at home, as well as abroad, ftood

Circulatio Harviana.

phlebotomia quandoque contingat, hanc veritatem confirmari. Nam, recte brachium quanquam ligaveris, \& fcalpello debito modo diffecueris, apto orificio \& omnibus rite adminiftratis; tamen fi timor, aut quevis alia caufa, aut animi pathema lipopfychia adveniat, ut cor languidius pulfet, nullo modo fanguis exibit, nifi guttatim : prefertim in ligatura ftrictior paulo facta fit.--Ratio eft, quia compreflam arteriam languidor puifus \& impellens vis infirmior recludere \& fanguinem infra ligaturam trudere non valet : imo per pulmones deducere, aut è venis in arterias copiofe transferre, enervatum \& languidem cor non poteft. -- Sic codem modo, \& eifem de caufis contingit mulierum menftrua, \& omnem hæmorrhagiam fedari.- Ex contrariis etiam hoc patet; quoniam, redintegrâo animo, amoto metu, cum ad fe redeunt, jam adaucio robore pulfificante, arterias flatim vehementius pulfare (etiam in parte ligata) in carpo moveri, \& fanguinem per orificium longius profilire, continuo videbitur. [V. Lect. IV. per tot. \&\& §. 115.].
7. Hactenus de copia pertranfeuntis fanguinis in cor $\&$ pulmones, centrum corporis, \& fimiliter ab arteriis in venas \& habitum corporis. Reltat, ut explicemus, quomodo per venas ab extremitatibus ad cor retro fanguis remeet, \& quomodo venæ tint vafa deferentia eundem ab extremiatibus ad centrum: quo facto, tria illa propofita fundamenta pro circuitu fanguinis, fore aperta, vera, ftabilia, $\&$ ad fidem fufficientia iaciendam, exiftimamus.--Hoc autem, ex valvularum, quæ in venaruin cavitatibus reperiuntur, ufu, \&s ocularibus experimentis, fatis erit'apertum. Sunt namque in jugularibus deorfum feefantes, icx fanguinem furfum probibentes ferri: nam ubique fpectant, à radicibus venarum, verfus cordis locum.--Ego, wt alii etiam, aliquando reperi in emulgentibus $\& x$ ranis mefenterii, venarh cavam \&x portam fpectantes. Scu omino valvula facta
ftood many years infenfible to all the convictions of plain reafon, and the moft cogent demonftrations by ocular experiments, merely that the blind authorities of Ariftotle and Galen might not be over-turned, by this more certain and folid bafis upon which medicine is at pre-
fent

Circulatio Harviana.

funt, ne, à venis magnis in minores, moveretur fanguis, \&t fic illas dilaceraret, aut varicofas efficerit; neve à centro corporis in extrema, progrederetur.--Ego illud fæpiffime in diffectione expertus fum, fin, à radice venarum initio facto, verfus exiles ramos feecillum immitterem (quanto potuerim artifcio) ob impedimentum valvularum longius impelli non potuiffe ; contra vero forinfecus à ramulis radicem verfus, facillime. Et pluribus in locis, valvulæ binæ ad invicem pofite \& aptatæ funt ; adeoque venæ, viæ patentes \& apertre fint, regredienti fanguini ad cor, progredienti vero à corde omnino occlufr.
8. Comprehenfa vena cava, fanguinifque curfu intercepto, per aliquod fpatium infra cor, videbitur, à pulfu ftatim pene inaniri illam partem intra digitos \& cor; fanguine exhaufto à cordis pulfu, fimul cor albidiori multo colore effe; etiam in dilatatione fua, ob defectum fanguinis, minus. \& languidius tandem pulfare, fic ut emori denique videatur: cum contra ftatim, foluta vena, color \& dilationis magnitudo redeant cordi.- Poftea fi relinquas venam; St arterias fimiliter, per aliquam ditantiam à corde, ligaveris vel compreferis; videbis contra, illas vehementer turgere in parte comprehenfa, \& cor ultra modum diftendi, purpureum coiorem contrahere ufque ad livorem, \& tandem opprimi fanguine, fic ut fuffocatum iri credas: foluto vero vinculo, rurfus ad naturalem conflitutionem, in colore \&s magnitudine pulfus redire cerneres.--Ecce jam duo genera mortis ; extincto ob defectum ad cordis dextrums \& fuffocatio ob copiam : hic ad oculos utriufque exemplum habere licet, \&r dictam veritatem autopia in corde con-firmare.--.-Sanguini itaque motu opus eft, atque tali, ut ad cor rurfus revertatur ; nańn in externas partes immotus coagularctur: motu enim in omnibus calorem generari \& cionfervari videmus, quete evanefcere. Cum itaque fan-
fent fupported, and upon which the muft ever hereafter reft, fo long as nature herfelf fhall endure. Others at length, that could not withftand their own eyes, and the juft fentence of all Europe in its favour, were invidioully for depriving our Britihh Hippocrates of the ho-

nours

Circulatio Harviana.

guis in externis partibus fubfiftens, à frigore extremorum \& aeris ambientisgeletur; ut rurfus à fonte calorem omninopræfervationem fuam repetat, \& revertendo redintegret neceffe eft.--Videmus, à frigore exteriore, extremitates aliquando algere, ut lividi \& nafus \& manus \& genæ, quafi mortuorum, appareant ; quia fanguis in ipfis (qualis cadaverum, locis pronis, folet decumbere) confiftat: unde membra adeo torpida \& ægre mobilia evadunt, ut vitam pene amififfe videantur. Nullo modo profecto rurfus (prefertim tam cito) calorem, colorem \& vitam recuperarent, nifi novo ab origine affluxu \& appulfu caloris foverentur. - Hinc obiter petenda ratio eft, cur mœerore, amore, invidia, curis \& hujufmodi confectis, tabes \& extenuatio contingant, aut cacochymia \& proventus cruditatum, quee morbos plurimos inducunt $\& \varepsilon$ homines conficiunt: omne namque animi pathema, quod cum dolore \& gaudio, fpe, aut anxietate humanas exagitat mentes, \& ad cor ufque pertingit, \& ibi mutationem à naturali confitutione, intemperie \& pulfu \& reliquis facit, illud in principio totum alimentum inquinando \& vires infirmando, minime mirum videri debet, quod varia genera morborum incurabilium, in membris \& corpore, fubinde procreet; quando quidem totum corpus, in illo cafu, vitiato alimento \& inopia calidi nativi, laborat.--Præter hæc cum alimento vivant omnio animalia interius concocto, neceffe eft concoctionem perfectarn effe, fimul \& diftributionem; \& proinde locum \& conceptaculum, ubi perficiatur alimentum \& unde derivetur in fingula membra.
9. Sunt infuper problemata confequentia, ad fidem faciendam à pofteriore non inutilia.- Videmus in contagione, iciu venenato, \& ferpentum aut canis rabidi morfu, in lue venerea, $\&$ hujufmodi, illæfa particula contacta, tamen totums habitum contingere vitiari: lues venerea, illæfis ali-
nours due from fo great difcoveries, by filhing them out from the dark waters of his predeceffors; but all their arguments alledged, prove only that fome imagined the blood had a kind of circularly returning motion within the veffels, in a manner to them unknown ; or that they had only

Circulatio Harviana.

quando genitalibus, primo omnium vel fcapularum, vel capitis doiore, vel aliis fymptomatibus, 〔efe prodere folet. Vulnere, facto à morfu canis rabidi, curato, febrem tamen \& relicqua horrenda fymptomata fupervenifle experti fumus. Quoniam, in particulam imprefum contagium, una cum revertente fanguine ad cor ferri \& totum corpus poftea inquinare pofie, hinc patet. In tertianæ febris principio, morbifica caufa cor petens, circa cor \& pulmones quando immoratur, anhelofos, fufpiriofos \& ignavos facit; quia principium aggravatur vitale, \& fanguis in pulmones impingitur, incraffatur, non tranfit (hoc ego ex diffectione illorum qui in principio acceffionis mortui funt, expertus loquor) tunc femper pulfus frequentes, parvi \& quandoque inordinatifunt; ab adaucto vero calore, attenuatà materia, apertis viis \& tranitu facto, incalefcit univerfum corpus, pulfus majores fiunt \& vehementiores, ingravefcente paroxyfmo febrilio. Calor, fcilicet præter naturalis, accenfus à corde, inde in rotum corpus per arterias diffunditur, una cum materia morbifica, que eo modo à natura exfuperatur \& diffolvitur.--Cum etiam exterius applicata medicamenta vires intro exerceant fuas, ac f in intro fumpta efient, (colocynthis \& aloe ventrem folvunt, cantharides urimas movent, allium plantis pedum alligatum expectorat \& cordialia roborant, \& hujus generis infinita) hinc conthat forfan non irrationabiliter dici, venas per orificia, ab exterius admotis, abforbere aliquid \& intro cum fanguine deferre, non alio modo, quam illæ in mefenterio, ex inteftinis chylum exfugunt \& ad jecur una cum fanguine ap-portant.-Plant-animalia dicta, Oftrea, Mytili, Sponyiæ \& Zoophytorum genera omnia, cor non habent; pro corde enim toto corpore utuntur, \& quafi cor, hujurmodi animal eft. Cor recte difcernere attamen in apibus, mufcis, crabronibus it hujufinodi aliguando (ope perpicilli)
ly begun to form a loofe idea of the mode, in which a little part of the circulation was effected (See §. 62. following); nor was any of thofe obfcure paffages noticed by Dr. Harvey, who propofed the tracing of nature herfelf, and experimenting on living brutes, as

Circulatio Harviana.

ficit.- Pulfans quiddam intueri, etiam in pediculis, in quibus \& tranfitum alimenti per inteftina (cum tranflucidum fit animal) inftar macule nigre cernere infuper ciare poteris, multiplicantis illius fpecilli ope.--Sed in exanguibus \& frigidioribus quiburdam, ut cochleis, conchis, fquillis cruftatis \& fimilibus ineft pulfans particula, quafi veficula quædem vel auricula fine corde, rarius contractionem faciens, \& quem non, nifi æffate aut calidiori tempeftate, difcernere licet: in his pulfu aliquo opus eft, ad alimenti diftributionem, propter partium organicarem varietatem, aut denfitatem fubftantix: fed rarius fiunt pulfationes, \& quandoque omnino non, ob frigiditatem.--Hoc etiam infectis videtur contingere, cum hyeme lateant, vel plantæ vitam tantummodo agant : fed an idem etiam quibufdam fanguineis animalibus accidat, ut ranis, teftudinibus, ferpentibus, hirundinibus, non injuria dubitare licet. Unde \& veriffimum illud (Ariftot. de part. aniznal. 3:) quod nullum fanguincum animal careat corde.- Sic quibufcunque infunt pulmones, illis duo ventriculi cordis, dexter \& finifter; \& ubicunque dexter, ibi finifter quoque ineft; non è contra. Cum fpongiofi, rari \& molles fint ipfis pulmones, ad protrufionem fanguinis per ipfos vim tantam non defiderant; proinde in dextro ventriculo fibre, pauciores $\&$ infirmiores, nec ita carnofæ, aut mufculos æmulantes: in finiftro vero funt robuftiores \& plures, carnofiores \& mulculofi ; quia finifter ventriculus majori robore \& vi opus babet, quo per univerfum corpus longius fanguinem profequi debet. Hinc etiam medium cordis poffdet, \& triplo craffiorem parietem $\&$ robuttior eft finither ventriculus dextro. Hinc omnia animalia, etiam homines, quo denfiori, duriori \& folidiori habitu funt carnis, eo magis fibrofum, craffum, robuftum \& mufculofum habent cor. 10. Valvularum fimiliter ufunc confidera; quæ ideo factx,
the fole rules to guide his difquifitions. Thus if it be plain, that Hippocrates and fome others have known and declared, that there was both a circulation and a perfpiration throughout the body; 'tis equally evident, from their writings, that they neither knew the antecedent caufes, the

Circulatio Harviana.

ne femul emiffus fanguis in cordis ventriculos regeratur. Differentia ventriculorum incipit in robore, quia dexter duntaxat per pulmones, finifter per totum corpus impellit. --In aliquibus hominibus, torofis videlicet \& durioris habitus, dextram auriculam ita robuftam, \& cum lacertulis \& vario fibrarum contextu intius affabe concinnatam reperi; ut aliorum ventriculis robore videretur æquipollere: \& mirabar fane quod in hominibus diverfis, tanta effet differentia.--Sed notandum, quod in feetu auriculæ longe majores, quam pro proportione infunt; quia, antequain cor fiat, aut fuam functionem preftet, (ut ante demonftratum eft) cordis quafi officium faciunt. Primum, dum fertus, quafi vermiculus mollis, ineft folum punctum fanguineum, ifve veficula pulfans, \& umbilicalis venæ portio, in principio vel bafi dilatata: poftea cum feetus delineatus, ifta vefica carnolio: \& robuftior facta in auriculas tranfit, fuper quis cordis corpus pullulare incipit, nondum ulium officium faciens publicum : formato vero feetu, cum jam diftinata offa à carsibus funt, it perfectum eft animal \& moturn habere fentitur, tum cor quoque, intus pulfans hatetur, \& (ut dixi) utroque ventriculo fanguinem è vena cava in arteriam iransfundit.- Sic natura divina, cor addidit gradibus, tranfiens per omnium animalium confitutiones utita dicam, ovum, vermem, fetum, \&c. Arteriæ in fua tunicarum craffitic as roboie tantum à venis differant, quia fultinent impetum impellentis cordis \& prorumpentis fan-guinis.-- Hinc, cum natura perfecta nihil facit frufra, is in omnibus fit fufficiens; quanto arteriæ propinquiores cordifunt, tanto magis à venis in confitutione differunt, \& robuttiores funt $\&$ ligamentofar magis; in ultimis vero diffeminationibus ipfarum, ut manu, pede, cerebro, mefenterio, fpermaticis, ita conftitutione fimiles ant, ut oculari tunicarum infpectione, alterum ab altero internofcere diffi-
the modes of operation, nor the immediate effects of them ; which, as Dr. Pitcairn has, in his vindications, amply and elegantly proved, make the effential parts of every fcientifical difcovery.
§. XIX. The publication of Dr. Harvey's great difcovery to the world, foon excited a fpirit

Circulatio Harviana.

cile fit. Hoc auter juftis de caufis fic fe habet; nam quo longius arseriz difant à corde, eo minore multo vi, ictus cordis pe: mititum fpacium refracio, percutiuntur.- Adde, quud cordis impulfus, cum in omnibus arterarum truncis \& ramulis fufficiens fanguini effe debeat, ad diviiiones ingulas quafi partitus imminuitur: adeo ut ultimæ divifionts capillares arteriofe videantur venæ, non folum contititutio e, fed \& officio \& fenfibilem pulfum aut nullum aut non femper edant, nific cum pulat cor vehementius, aut arteriola in quavis particula dilatata aut aperta magis eft. Inde fit ut in dentibus quandoque ${ }^{2} t$ tuberculis, quandoque in digitis fentire pulfum poffimus, quandoque non. Unde pueros (quibus pulfus femper funt celeres \& frequentes) hoc uno figno febricitare certo obfervavi; \& fimiliter in tenellis \& delicatulis, ex compreffione digitorum, quando febris in vigore effet, facile ex pulfu digitorum percipere potui.- Ex altera parte, quando cor languidius pulfat, non folum, non in digitis, fed nee in carpo aut temporibus pulfum fentire contingit, ut in lipothymia, hyftericis fymptomatibus, afphyxia, debilioribus \& mori-turis.--Eodem modo in pulfuum fpeculatione; cur videlicet ifti lethales, aut contra; $\&$ in omnibus generibus, ipforum caufas \&x prefagia contemplando, quid ilti fignificent, quid hi, \& quare.--Similiter in crifibus \& expurgationibus naturæ, in nutritione, præfertim diftributione, alimenti, fimiliter \& omni fluxione.--Denique in omni parte medicinæ, Phyfiologica, Pathologica, Semeiotica, Therapeutica, cum quot problemata determinari poffint ex hac data veritate $\hat{*}$ i luce ; quanta dubia folvi \& quot obfcura dilucidari, animo mecuns reputo, campum invenio fpatiofifimum, ubi longius percurrere \& latius expatiari adeo poffum, ut non folum in volumen excrefceret, preter inffitutum
fpirit of emulation, and employed all the European profeffors of anatomy, to trace the fleps thereof, both in living and dead fubjects; and in both to examine all parts with more labour and care than they were hitherto ufed to befrow: the confequences of which were, very
confi-

Circulatio Harviana.

infitutum meum, hoc opus, fed mihi forfan vita ad finem facienoum deficeret.
11. Quantum pulmones in textura \& mollitie, ab habitu corporis \& carnis recedunt, tantum differt vena arteriofe tunica, ab aortæ. Semper hæc omnia ubique proportionem fervant, in hominibus: quanto enim magis torofi, mufculofi \& durioris fint habitus, \& cor habeant robuftum, craffum, denfum \& fibrofum magis, tanto auriculas \& arterias proportionabiliter in omnibus, crafifitie \& robore habent magis refpondentes. Hinc quibus animalibus, leves ventriculi cordis intus funt, abfque villis aut valvulis, \& parie:e tensiore (ut pifcibus, avibus, ferpentibus \& quam pluribus generibus animalium) in illis arteriæ parum aut nihil à venis differunt in tunicarum crafitite. Amplius, pulmones tam ampla habent vafa, venam \mathbb{E} arteriam, ut truncus arteriæ excedat utrofque ramos crurales \& jugulares ; caufa eft, quia in pulmonibus $\& x$ corde promptuarium, fons $\&$ thefaurus fanguinis $\&$ officina perfectionis eft.- Vita igitur in fanguine conffit, (uti eniam in focris noftris legimus). Ciebrâ enim (ut dizi) vivorum diffectione expertus fum, moriente jam animali, nec ampliùs fpirante, cor tamen aliquandiu pulfare, vitámque in fe retinere. Quiefcente autem corce, motum videas in auriculis fuperftitem, ac poftremò in auricula dextrà ; ib'que tandem ceflante omni pulfatione, in ipfo fanguine undulationem quandam, \& obfuram trepidationem, five papitationem (extremum vitx indicium) reperias. Et euilibet cernere eft, fanguinem ultimo calorem in fe retinere: quo femel prorfus extincto, ut jam nón ampliùs fan. guis eft, fed cruor; ità nulla pofliminio ad vitam revertendi ppes reliçua. At veró, tum in ovo, tum in moribundis animalibus, poftquam omnis pulfatio difparuit; fi vel puncto falienti, vel dextra cordis auricula levem fomitem adnoveris; videbis illico, motum, pulationem, ac vitam
confiderable anatomical difcoveries, of a leffer order, by different profeffors, in all quarters of Europe; according as each of them had chofen particular provinces of the human body, to be the proper objects of their ftricter enquiries and experiments. Injections of water, milk, ink, \&c.

Circulatio Harviana.

à fanguine redintegrari : modo is calorem omnem innatum, fpiritumque vitalem haud penitùs amiferit.--2uibus clarà confat, fanguinem efje partem genitalem, fontem vitce, primùm vivens \&o ulimo moriens, fedemque animæ primarium; in quo (tanquam in fonte) calor primò, \& precipué abundat, vigétque; \& à quo reliquc omnes iotius corporis partes calore influente foventur, छु vitam obtinent.——Propterea, fanguis ubique in corpore reperttur; nec ufpiam id acu pungere, vel minimùm fcalpere queas, quin fanguis ocyùs profluat: tanquam, abique eo foret, nec calor partibus, nec vita fupereffet, Ideóque, concentrato, fixóque leviter
 veluti in lipothymia, timore, frigore externo, \& febrium infulta contingit; videas illico totùm corpus frigefcere, torpere, \& pallore livoréque perfufum languefcere: evocato autem rurfus fanguine, per adhibita fomenta, exercitia, aut animi paffiones, (gaudium nempe, iramve) hui! quàm fubitò omnia calent denuo, florent, vigent, fpléndentque? hinc cauflas perficere liceat, non modò vita, in genere, fed longioris etiam, aut brevioris ævi; fomni, vigiliarum, ingenii, roboris, \&zc. Nanque ejus tenuitate (ait ibid. Arift.) छ munditie, animalia fapientiora funt, fenfümque mobiliorem obtinent: Semiliter, vel timidiora, vel animofa; iracunda, छ furiofa evadunt; prout fcil. Sanguis torum vel dilutus, vel firis multis crafijfque' refertus fuerit. ——Nec vitæ folûm fanguis autor eft; fed, pro ejus vario difcrimine, fanitatis etiam, morborúmque cauffie contingunt. Quinetiam venena, qux forinfecus nobis adveniunt (ut ictus venenati) nifif fanguinem inficerent, damnum nullum afferrent. Adeò nobis ex codem fonte, vita \& fanitas profuunt. Si Janguis nimis elicuefjat (inquit Arif.) agrozant. Namque in cruorem forofum abit adeò, ut quidam fu-
 guinem
$\& x c$. were firft ufed to trace the veffels, by Euftachio, Harvey, Highmore, Gliffon, Willis, Bartholin, $\&<c$. which were afterwards changed for fuet, or other hardening matters, by the ingenious Swammerdam; from whom his friend Ruyfch received them, and by their dexterous adminiftration,

Circulatio Harviana.

guinem alendi gratià inftitutum putavit; ità eundem etiam, veluti è partibus, compofitum cenfuit. Nempe ex craffiore, \& atrâ, qua in fundum pelvis, inter concrefcendum, fubfidit: eáque pars illi deterior habetur: Sanguis enim, inquir, fi integer eft, ribet, Eo dulcis foporis eft; fed, fi vel naturâ, vel morbo fit vitiatus, atrior cernitur. Ex parte etiam fibrosâ, five tibris, conflare voluit: iifque demptis, (ait) Sanguis neque con refcit, neque fpiffatur. In fanguine preterea faniem agnovit: Sanies, inquit, fanguis incoctus eft; aut quia nondum percoctus, aut quid in feri modum dilutus fuerit. Atque bunc frigidiorem efle, ait; fibras au-' tem partem fanguines terrenam effe ftatuit.- Quapropter fanguis variè difcrepat: adeò ut quibufdam is fit ferofior, tenuíor, \& quaff fanies, feu ichor ut in frigidioribus; quibufdam verò croflior, fibrofior, \& terreftrior, \&c. nonnullis (vitiati fcil. temperamenti) fanguis atrior: aliis autem mundus, fincerus, \& foridus, qualis præcipuè confpicitur. - -Unde conitat, tum Medicos, tum Arifotelem, fanguinem ex partibus $\&$ differentiis quadantenus fimilibus confituere. Quippe priufuam corporis quifpiam vifu difcernitur, fanguis $\mathrm{j}: \mathrm{m}$ gentus $\& \frac{1}{}$ actus eft, palpitátqué (ut Arifoteles, ait) intra venas, pulfíquo fimul quoquover fums viovetur ; folûfque omnium bumorum Sparfus per totum corpus animalium eft. Et femper, quandiu vita Servatur, fervet. Quinimo ex vario iphus motu, in celeritate aut tarditate, vehementià aut debilitate \&xc. eum \& irritantis injuriam, \& foventis commodum perfentifcere, manifeflum eft. Quippe fanguis, dum in corpore naturaliter fe habet, fimilaris ubique conftitutionis apparet. Quamprimùm autem extravafatur, calorémq̧ue nativum exuit; protinus, (ceu diffimilare quiddam) in diverfas partes abit. Partes porrò alix fibrofe \& denfiores (reliquarum vinculum:) aliæ ferom fre, quibus coagulatus thrombus innatare folet. Atque in hoc
tion, with other artifices, acquired no fmall degrees of profit, andextenfive reputation; the magnifier or microfcope, began alfo to be firft applied to anatomy by Dr. Harvey *, and by the two laft gentlemen. Dr. Harvey firft publifhed upon the motion of the heart and blood, at Franc-

* See his obfervations on the heart of infects. p. lxx. fub finem. fort,

Circulatio Harviana.

hoc ferum, fanguis tandem fére totus degenerat. Partes autem iftæ non infunt vivo fanguini, fed à morte folùm corrupto, \& jam diffoluto. In calidioribus \& robuftis hominibus alia fanguinis pars cernitur quæ ineo foràs oducto \& grumefcente fuperiorem locum occupans condenfatur, \& gelatinem ex cornu cervino, feu mucaginem quandam, aut albumen ovi craffius planè refert; locúmque fupremum in fanguinis difgregatione obtineat. - Deinde in venæ fectione, fanguis hujufmodi profiliens (qui plurimus abundat hominibus calidæ temperaturæ, robuftis, \& torofis) longiore filo impetúque vehementiore (tanquam è fiphone elifus) exflit: ideóque eum calidiorem, \& firitalem magis judicamus; quemadmodum \& genitura forcundior, fpiritibúque plenior æfitimatur; quæ longe, validéque ejicitur. --Differe quoque plurimùm hanc mugaginem, $a b$ ichorofo \& aquosâ illâ fanguinis parte, quæ (ceu reliquis frigidior) aquofa \& faniofa pars, crudior magífque incocta eft, quàm ut in puriorem $\&$ perfectiorem fanguinem tranfiere poffit. Quin certum eff, non modò partem, illam, fed \& univerfum fanguinem, in faniem ichorofam corrumpi poffe. Refolvuntur nempe in materiam, unde primo componebantur; ut fal in lixivium, unde orus eft. Similiter in omni cachexiâ, fanguis emiffus copiofo fero abundat: adeo, ut interdum vix quicquam grumofi appareat, fed omnis fanguis una fanies videatur: ficut in leucophlegmatia experimur, \& animalibus exfanguinibus naturale efo. Virginibus cachecticis, febríque albâ laborantibus, ut reliquo earum corpori, ità jecori etiam pallidus inhæret color; penuriz fanguinis in corpore manifefum indicium.-Dumautem affero, vitam primò ac principaliter in fanguine refidere: nollem binc perperam concludi, omnem phlebotomiam effe periculofam, aut noxiam: vel, sum Fulgo, credi, quantum fanguinis detabithr, tantundem fr-
fort, 1628 ; about which time, Afelli of Milan, alfo publifhed his difcovery of the lacteals in a dog. Pecquet of Patis, wrote on the receptacle and duct of the chyle (16 fI .), that had been defcribed before him by Euftachio. Bills and Jollif efpied the lymphatic veffels

Circulatia Harviana.

mul vitæ decedcre; quòd facræ paginæ, vitam in fanguine conflituefint. Quotidianâ enim experientiâ notum eft, fanguinis miffionem effe plurimorum morborurn falutare auxiliun, \& inter remedia univerfalia præcipuum : utpote ejus vitium, vel abundantia, maximam morborum cateívam conflituat; \& oportuna evacuatio, à morbis periculofiffinis, mortéque adeò ipsâ fæpe liberet. Quantum enim fanguinis ex arte detrahitur, tantundem vitæ ac falutis additur.-IId ipfum nos Natura docuit, quam Medici fibi imitandam proponunt : hæc enim, largâ \& criticâ evacuatione per nares, menfrua, aut hæmorrhoïdas, affectus frpe graviffimos tollit. Ideòque adolefcentes, qui pleniore viçu utuntur, vilámque in otio tranfigunt, nifi circa decimum octavum, aut vicefimum ætatis annúm (quo tempore fanguinis copia, unà cum corporis incremento accumulari folet) aut (pontaneo per nares, vel loca inferiora effluvio; aut apertâ venâ, à fanguinis onere liberentur; plerunque febribus, variolis, capitis doloribus, aliifque morbis \& fymptomatis gravioribus periculofiffmè ægrotant. Quod refpicientes Veterinarii, omnem ferè jumentorum medelam à venæ fectione auficantur. Ultimo jam experimentum hoc admirabile (unde cor ipfum, membrum filicet principialifimum, vix fenfile appareat) non retice-bimus.--Nobilifinnus Adolefcens, \& illuftriffimi Vicecomitis de Montegomero in Hibernia fllius primogenitus, cùm adhuc puer effet, ingens ex infiperato lapfu nactus eft infortunium; coftarum nempe finifitri lateris fracturam. Abfceffus fuppuratus, magnam tabi quantitatem profudit; faniefque diu è cavitate ampliffimá manavit: utì ipfe mihi, alifque (qui aderant) fide digni narrârunt. Is circa annum xtatis fure decimum octavum, aut decimum nonum, per Galliam \& Italiam peregrinabatur ; indeque Londinum appulit. Interea vero peramplum hiatum in pectore aper-
veffels (i650.); which had been tranfiently feen upon the liver before them, by Afelli. Wharton (1656.), Steno (1662.), and Nuck (1690 .), dived into the glandules in general. Swammerdam (i664.), and de Graaf (1668.), examined the parts of generation ; Harvey (I65I.),

Circulatio Harviana.

tum geftabat; adeò, ut pulmones (uti creditum eft) in eo cernere, ac tangere liceret. Id cum ferenifimo Regi Ca rolo, ceu miraculum, nunciaretur ; me fratim, ut quid rei effet perficicerem, ad Adolefcentem mifit. Quid fačum ? Cum primùm accederem, viderémque juvenem vegetum, \& afpectu quoque, habitúque corporis laudabili præditum; aliquid fecus, atque oportuit, nunciatum arbitrabar. Praxmifsâ autem, ut mos eft, falutatione debitâ, expofitàque ex mandata Regis eum adeundi caufŝ̀; omnia illico patefecit, nudámque lateris finifri partem mihi aperuit; ablatâ fcil lamellấ, quam tutełæ gratiâ adversùs içus, aliâfque injurias externas, geftabat. Vidi protinus ingentem pectoris cavitatem, in quam facilè tres meos priores digitos, unà cum pollice immitterem: fimúlque in primo ejus ingreffu partem quandam carnofam protuberantem, reciprocóque extrorfum introrfúmque motu agitatam deprehendi, manúque cautè tracłavi. Attonitus rei novitate, iterum iterúmque exploro omnia: $\&$, cùm diligenter fatis inveftigata effent; certum eram, ulcus antiquum \& peramplum (citra Medici periti auxilium) miraculi inftar, ad fanitatem perductum effe, parteque interiore membranâ veftitum, \& per marginis ambitum firma cute munitum. Partem autem carnofam (quam ego primo intuitu, carnen aliquam luxuriantem credideram, alíque omnes puimonis partem judicabant) ex pulfu, ejúfque differentiis, feu rhythmo, (utrifque manibus carpo \&e cordi fimul admotis) \& ex refiriationis collatione planè perfpexi, non pulmonis lobum aliquem, fed cordis conum effe; quem caro fungofa excreficens (ut in fordidis ulceribus fieri folet) exteriùs, muniminis inftar, obtegebat. Concamerationem ifan, à fubnafcentibus fordibus Adolefcentis famulus injectionibus tepidis quotidie liberabat, laminámque imponejat: quo faEto, herus fanus, \& ad qualibet exercitia ac itinera promptus, tuto \& jucunaè vitam degebat-Refponf rice igitur,
(I65I.), Needham (1666.), Hoboken (1669.), and Kerkring (1670 .), the foetus, and its appertinents. Gliffon illuftrated the liver (1654.); Verfung (I6́43.), and de Graaf (1664.), the pancreas; Ruyfch (1665), the fpleen and lymphatics; Willis (1664.), Vieufens (1685.), and Ridley (1695.), the brain and nerves, while Ruyfch went on with the blood-veffels. Willis (1673.), and Peyer (1677.), fcrutinized the ftomach and guts; Bellini (1662.), and Malpighi (I666.) the kidneys; Borelli, and Lower (1669.), the heart ; Highmore (1651), Schneider (1655.), and Cowper (1698.), the inner nares; Briggs, the eye (1685.), and Duverney (1683 .), the organs of hearing, \&cc. all which, with leffer difcoveries and obfervations, you will find worked up into the fyftems of the laft age, recommended at §. XIII. although, as we have beffore obferved (§. XVI.), you will perceive a great many of thofe fuppofed newdifcoveries, already anticipated above an age before, by the great prince

Circulatio Harviana.

Adolefentem ipfum ad fereniffimum Regem deduxi; ut rem admirabullem \& fingularem, propriis ipfe manibus tractaret, atque oculis intueretur: nempe, in homine vivente \& vegeto, citra ullam offenfam, cor fefe vibrans, ventriculofque ejus pulfantes videret, ac manu tangeret. Factúmque eft, ut fereniffimus Rex, unà mecum, cor fenfu tactûs privatum effe agnofceret. Quippe adoleicens, nos ipfum tangere (niif vifu, aut cutis exterioris fenfatione) neutiquam intelligebat.-Simul, cordis ipfius motum obfervavimus; nempe, illud in diaftule introrfum fubduci \& retrahi; in fyftole verò, emergere denuo \&z retrudi : fieríque in corde fyRolen, qua tempore diafole in carpo percipiebatur: atque proprium cordis motum \& functicnem, effe fyitolen: denique, cor tunc pectus ferire, \& prominulum effe; cùm ergitur furfum, $8 x$ in fe contrahitur.
prince of anatomifts, Euftachio. See §. XVI. foregoing.
§. XX. Thofe who defire to be ftill better critics in the anatomy and phyfiology of the prefent day, beyond the lengths which our prefent Compendium will conduet them, may confult our learned anatomift, Dr. Haller's notes on Boerhave; for the fake of form, thofe reprinted at Venice, 4 to. feven vol. 174 . \& feq. to which add the eight fupplemental volumes of Thefes, intended to fupply their deiects, lately imported by Mr. Nourfe, ir the Strand. The learned Adverfaria and Epiftles of that great ornament to anatomy, and to all Itaiy, Morgagni ; the improved fyftem of Winflow, that is daily expected from under the care of Dr. Aftruc ; the works of Albinus and Ruych, \&cc. The principal writers from Hippocrates to Harvey may be briefly furveyed in the Bibliographia Anatomica of Dr. Douglas. Lug. Bat. 1727. L. Heifteri. * Compend Anat. Amit. 1750. For figures, thofe of Euftachio, explained by Albinus, Leidæ, 1744. Thofe pompous tables, which are by fome afcribed to Swammerdam, firft publifhed with a bad explanation, by $\mathrm{Dr}_{\text {. }}$. Bidlow, and afterwards with a better, by Mr . Cowper, are fo finelly defigned, by Laireffe, and engraved by Van Gunt, that the fair copies of them wili hardly ever fail of efteem, although they fall very fhort of anatomical truth. Many of the figures are inverted, fo

[^4]Vol. I.
f
that you cannot fee them rightly, but by looking at them in mirror ; as thofe of the heart and lungs, tab. 22. and 24. alfo of the liver, tab. 37. The figures, no lefs than the vafcular and nervous ftructure of the vifcera, are often very wide of nature ; fometimes fupplied from fancy, and bad preternatural figures. But the mufcles are fine, frong, and lively; the general fituations of the vifcera, in the venters; well reprefented; and the bones are no lefs boautiful: only as the mufcles are fadly diffected or prepared, for the draughts; fo the bones are copied from bad fpecimens, fuch as are too fmooth, young, female, or unexercifed, yielding no juft ideas of the afperities, by which the mufcles are inferted into them..--Thofe, on the contrary, which have been given us by the great Euftachio of our age, Albinus, are every way finithed to perfection, fo as to reprefent even the very habits of the fætal and adult bones and mufcles, as in a painting: and thofe ngures of the vifcera, that are now publifhing in numbers, by a very learned anatomift, auchor of this treatife, Dr. Haller, at Gottingen, in Germany, are equally finifhed and praifeworthy; as are alfo the plates of the gravid womb, now in the prefs, by the ingenious Mr . Hunter. The mufcular fytem, printed in colours at Paris, by M. Gautier, 1745 . \& feq. fall very fhort of thofe that were publifhed by Courcelles, (icones mufculorum Capitis Leidæ, 1743.), which how us that Le Blond's art of printing things to the life by a due mixture of the primitive colours, red, blue and yellow, may
both elegantly and ufefully be applied to anatomy ; as Dr. Martin of Chelfea, has formerly fhown us in Botany. Thofe who defire truth and cheapnefs together, can purchafe no fet of anatomical figures, equal to thofe of Euftachio and Albinus, lately publifhed by Meff. Knaptons, in Ludgate-ftreet; but bad figures, like bad habits in mufic or other fciences, ought carefully to be fhuned by all learners in anatomy, as they corrupt the ideas, or fix impreffions that are afterwards not eafily corrected, but from viewing nature herfelf, under a good profeffor.

PHYSIOLOGIA;

 O R, A
COURSE of LECTURES

ONTHE

Visceral Anatomy and Lifing Oeconomy of the Human Body, \&cc.
LECTUREI.

Of the Animal Fibres.

8. I.HE mort fimple parts of the human body are either fluid or folid. The fluid parts be-ing of divers kinds, we fhall hereafter confider in their mof convenient places. But here the folids, which make the moft fimple and true bafis of the body, come firt to be confidered before the hiftoxy of the other parts.

> B

A

> REMARK.

A body, philofophically fpeaking, is any extended and refifting object of our fenfes; whofe parts have more or lefs an attractive and cohefive force one to another. If this cohefion betwixt the parts are ftrong enough to keep them in their fituations (contrary to the force by which they tend to the earth's center) and preferve the natural figure of the body, we call it a Solid; but if this cohefion be fo weak that the gravitation of parts brings them to a level, or to a portion of the earth's convexity, when left to thernfelves, we call it a fluid; but if the cohefion of parts be neither ftrong enough to retain the figure, nor weak enough to let them flow to a level, we call the body Soft, in various degrees 'till you come to the cohefion of a folid, beyond which we count bardnefs. Hence we fee, that, by leffening the cohefion and contact of parts, the fame body may be either folid, foft or fluid; as, e. g. Refin or butter with different degrees of heat, leffening the attraction of cohefion in the conftituent particles.
§. 2. The folid parts of animals and vegetables have this fabric in common, that their elements, or the fmalleft parts we can fee by the fineft microfcope, are either fibres, or an unorganized concreet.

> - R E M A R K.
(i.) Elements are the fmalleft and moft fimple particles we can defcend to in the compofition of bodies. And thefe, which we are to confider as the keys of nature, are fuch as we are either led to by fenfe and reafon, or by rea-
fon only. Thefe laft are, therefore, termed ontological elements or primitive atoms, from their firft obferver Democritus, in contradiftinction to the four common or phyfical elements of Ariftotle. For though matter be in the mind infinitely divifible, 'tis not actually fo in nature, but to a certain degree. And from thefe indivifible or atomical particles, differing only in bulk and figure, by a various combination, arife thofe fenfible or univerfally extended homogeneous bodies we call phyfical elements, becaufe we fee nature ufes them by mixture, texture and organization to form all the bodies in the univerfe. Such are the infinite expanfion of atber; our limited fphere of air; the more confined body of waier; and that ftill lefs body which we call eartb.
(2.) 压Ther is that compound, ever highly elaftic and fubtileft of all fluids, which is extended by reciprocal undulations throughout the univerfe (our vacuum's or exhaufted glaffes not excepted) fo as (by moving with a certain celerity in direct lines) to form light; by reflection and refraction, colcurs; by attraction and colliffion with the other elements, beat and fire ${ }_{\text {j }}$ lefs degrees of which we call cold.
(3.) Arr is that diaphanous and compreffible fluid which is extended about a degree round the terraqueous globe, being wich us about $46,656,000,000$ times more denfe and fluggifh than æther, betwixt which and air there is a very great affinity or attractive force, as their denfity; i. e. the air contiguous to the æ̇ther cakes in and concentrates the æther proportionally to its greater denfity, by which it is rendered mote fpringy and active, with this difference that the air, by contact and cohefion in the parts of bo-
dies, becomes folid and unelaftic (but æther neter) ; from whence again, by heat, fire or diffolution of parts being feperated, its elafticity peturns. This element has a near affinity or relation to water, becaufe it eagerly takes up rarified water into itfelf, as water again drinks up a portion of air within its contact; fo that air and water, actuated by æther, make the levers and wedges by which nature performs all her changes in bodies either fynthetically or analytically. And it ferves as the common medium of communication betwixt us and all bodies.
(4.) Water is a colourlefs, infipid, inodorous and uninflammable liquor, ftrongly related or of near affinity both to air and eaith, but more particularly the laft, fince it readily abforbs them, as they abforb it. This owes it fluidity to a certain degree of heat, fince with a heat, two thirds lefs than that of our blood, it congeals; and with about twice the heat of our blood it boils, beyond which it can be made no hotter.
(5.) Earthe, as an element, is a folid, opaque, angular, friable, chalky fubftance of fuch fmall wolatile particles, that it readily diffufes itfelf through air and water, and refides invifibly in them; as earth eagerly imbibing both air and water, by their means forms the permanent bafis and growth of all mineral, vegetable and animal bodies.-A Amall particle of æther, air and water combined will, from their fluidity, form a ipberule, confequently infipid and inodorous; but coming into ftrict union, round a more denfe, angular particle of earth, will be a conoide corpufcle, of which the fpherule will be the bafis, and the leaft point of the earth the apex. Such particle, irritating the fmell and tafte by its figure
sigure and denfity, volatile from its minutenefs, and ftrongly attracting both air, water, and earth, (efpecially the laft) we call an acid, fluid falt. And fuch parts again varicunly combined with light earth and the other elements, will form a bituminous, greafy, fulphurous or oily fubftance, combuftible or inflammable, as Sir I. Newton obferves. Thus mineral elements, falts and fulphurs taken from the earth, do, by heat and organifation, become vegetable in plants; thore of plants are changed into animals, and thofe of animals into one another, without ever carrying the diffolution to the minima naturalia, or atoms of Democritus. An acid is thus by the reed neutralifed into fugar; in the common radifh, pellitory of the wall, \&cc. 'tis made nitrous; in the horfe-radifh, onion, \&cc. alcaline; and alcalies, (foot, pot-afh, rotten flefh) are again in the vine and grape changed firf into a four and then into a faccharine juice, \&cc. fo that out of a few fimple elements (as in the notes of mufic) by combinations arife all the varieties of medicinal and other fubitances. Thefe combined by mere mixture and contexture, as in minerals, falts, gums, cartilages, glue, \&c. make an unorganifed concreet; but when the parts combined perform any motion in a living body, whether plant or animal, we call them a machine, or if complex an organ; of which fibres or flexible elaftic threads are the moft fimple, and univerfally compofe the reft. So elaftic globules, with a watry albumen or gelly, are the bafis of all the circulating juices, that of the nerves not excepied.
§. ?. A fibre in general may be mathematically confidered as refembling a line made B_{3} rather geometrically as a flender cylinder. And that the more conftant or permanent parts thereof are earth, is demonftrated from a calcination, or a long continued putrefaction.

> REMARK.

An animal or human body is not improperly faid to be made up of clay or flimy earth, fince all the folids (which are compofed of fibres) and even the permanent or globular fluids which circulate, are formed of chalky particles like thofe of pipe clay cemented together by glue or gelly; as you may fee by burning a lump of blood or a bone in a clear fire, where after the air, water, falt and oil, which compofe the glue, are expelled and confumed, you have a white, friable, chalky earth, coming the neareft to virgin or elementary earth of any we know. So likewife by difeafe or putrefaction in a fpina ventofa of the bones. And we fee thefe ftamina or gluey particles of earth, which compofe all the minute, folid and fluid machinulæ of the body, are prepared from our ingefta paffing not only the chylificative, fanguineous and ferous veffels, but alfo for fome parts through the brain and nerves, before they are applied as nutritious matter; requiring a healthy ftrong fate both of veffels and humours to duly prepare them as to fize, quantity and quality, as well as to apply them, (a defect of which we fee in rickets, fcorbutic, venereal, caies); whence 'tis fomewhat ftrange our great Boerhaave fhould in his 2Ift pracrical aphorifm, conceive them as immutable in their foft glutinous fate within cut bodies, as
in the dry rigid condition of a goldfmith's cuppell, after paffing the fire.
§. 4. Thefe earthy particles have their connexion and power of cohefion not from themfelves, or a mere contact, but from the intermediate glue placed betwixt them. This we know from the experiments mentioned above (§.3.) ; and from the eafy experiment by which a burnt hair, whofe parts yet hang together, recovers a degree of firmnefs by dipping in water or oil. Alfo the remains of ivory or bone fhavings, whofe gelly has been extracted, become friable.

> REMARK.

Thefe experiments fufficiently prove that the degree of cohefion in the parts of a fibre by which 'tis faid to be ftrong or weak, lax or rigid, depends chiefly on the quantity and tenacity of the intermediate connecting glue.
§. 5. That this glue is compofed of oil combined with water by the vital attrition in animals, appears again from the chemical analyfis of bones and hair ; from the jelly of bones, ivory, and horns; and from the nature of our aliments themfelves. Nor is there any kind of glue that could more powerfully join tbe parts of animals together; as we experience in fifh-glue, and that of joiners or cabinet-makers, \&c. See §. 5. ult.

REMARK。

Add that this oil is difpofed to unite with the water by attrition from a confiderable portion of an ammoniacal or neutral falt joined with a good deal of unelaftic air; which falt we obtain in an alcaline volatile ftate by diftillation.
§. 6. Earthy particles then (§. 3.) cohering longitudinally, and tied together by an intervening cohefive glue, (§. 5.) compofe firft one of the leaft or moft fimple fibres; fuch as we have a knowledge of rather from reafon than fenfe.

> R E•M A R K.

The fineft microfcopes have been hitherto infufficient to lead us to a fight of the fmalleft moving and nervous fibrils, and ftill lefs can we ever expect from them to get any fenfible idea of the mechanifm by which fenfation and motion are effected. For how motion is modulated to produce animal fenfe, or how animal fenfe and will can produce motion, we can only conjecture, and never certainly know. We proceed, therefore, to compound vifible fibres.
§. 7. But the leaft fibrès which appear laft to the fight, if you will take up with their firf appearance and the eftablifhed opinion, are of two kinds.

> REMARK.

From the figure of thefe two kinds of fibres, as we fhall prefently fee ($(5.8,9$.) we may diftinguifh the former by the title of filamentary, and the latter of membranous.
§. 8: The
§. 8. The firft kind of thefe fibres (§.7.) is lineal, namely, fuch a form as makes their length confiderably large in proportion to their breadth; and which, by difpofing of the elementary particles in a right line; muft of courfe lay them generally parallel with the neighbouring or contiguous fibres. Examples of fuch fibres we fee in the bones, and moft eafily in thofe of a fœetus; and likewife in the tendons, ligaments and mufcles: only we muft here always remember, that the eye never reaches to the fmalleft fibres, but to larger ones made up the fmalleft, and like to them in flendernefs, placed together in a rectilineal courfe. That thefe are not diffesent from the fmalleft fibres, we are porfuaded by the moft accurate microfcopes of Muyfe and Lewenhoeck; by which, the mufcular fibres divided even to the laft, appear fimilar to the larger, till, at length, they feem mere lines, like fpiders threads.
§. 9. The fecond kind of fibres (§.7.) are thofe which are conjoined with a breadth frequently larger than their length, in forming what is commonly called the cellular tunic or membrane; tho the name tunic or membrane is on many accounts improperly given to it.

> REMARK.

From what has been faid, we may admire nature no lefs for her wife œconomy than fimplicity, in thus forming all that variety of parts we fee in an animal from one fimple mafs of clay or flimy matter,
matter, compounded of earth and glue; from whence the body is not only augmented from a fingle point in the ovum to its full growth and ftature; but, like the timbers of a hip, is alfo every day repaired during life, 'till, at length, not two jots of the old or firft materials remain. This renovation of parts is made flower in fome conftitutions, and in fome organs, than in others. How quickly the animal humours with the hair, nails, \&c. are renewed every one knows : and we may venture to fay, that once in three years the change is univerfal ; at the end of which time, tho' a man remains the fame identical perfon, he is not the fame matter. But we proceed from thefe fimple fibres t, the next leaft compounded folid which they compofe, viz. the tela vel fubfantia cellulofa fpongioides, the cellular web-like fubftance.
§. Io. The faid cellular fubftance is made up partly of the forementioned fimple fibrills ($\$.8,9$.) and partly by an infinite number of little plates or fcales, which, joined in various directions intercept fmall cells and web-like fpaces; and by extending round every, even the leaft moving folid parts of the body, conjoins them altogether in fuch a manner as not only fufains, but allows them a free and ample motion at the fame time. But in different parts of the body we obferve a great wariety of this web-like fubftance, in refpect of the proportion betwixt the membraneous fides and intercepted cells, as well as the breadth and frength of thofe fides, and the nature of their contained liquor, which is
fome
fometimes more watry, and fometimes more oily.
R E M A R K.

The extenfion of this fubftance, not only with the fkin round the whole body, but alfo round every vifcus or organ, and round every individual moving fibre or veffel of them, into the cavities of the bones, and even the fubftance of the brain and its medulla, is a modern and wonderful difcovery of anatomifts, by which we have great light into many otherwife obfcure difeafes. This fubftance in its ultimate or fineft fate being compofed of fimple membranes, when compacted and convoluted, gives birth to the leaft or moit fimple veffels, which, again reflected through plates of the fame fubftance compacted together, make compound and vafcular membranes, to the confideration of which we next proceed:
§, II. Out of this net-like cellular fubfance compacted by a concretion of the membranous plates or partitions, and preffed together by the force of the incumbent mufcles and diftending fluids, arife other broad and flat plates or $1 k i n s$ in various parts of the body, which being generally difpofed in one and the fame direction, feem to have yet a better right to the title of membrane, than the former ; and thefe being convoluted into cones and cylinders, pervaded by a flux of fome juice or liquors brought to them, put on the name of veffels, or elfe being exsended round fome face that is in a plane paralle!
parallel to itfelf, we call it a tunis or coat. But that tunics or coats are formed out of the cellular fubftance is proved to ocular infpection, efpecially in the aorta or dura-mater, by maceration; and the coats of the mufcles are thus evidently of a cellular fabric, while they refemble the texture of other membranes; from a degeneration of the pericardium as a true membrane into the cellular fubftance, or membranes of the great blood veffels belonging to the heart; from the origin of the hard and thick membranes which are about encyfted tumors, and which are formed only in the cellular fubftance; laftly, from the eafy change of the dartos coat of the tefticle, and the nervous tunic of the inteftines, by inflation, into the cellular fabric.
§. 12. All the veffels with which we fee tunics commonly painted, are an addition to the cellular net-work, and in no wife contitute the nature of a membrane, but are fuperadded to the membrane itfelf, which is firft formed of the cellular net-like fubftance. Betwixt the mafhes or fpaces of the inteftinal net-work of veffels, perfectly well filled by the Ruyfchian art of injection, we ftill fee that the white cellular fubftance which remains, greatly exceeds the bulk of the veffels, although, by their preternatural diftention, they take up more room by filling more of the fpace. But for membranes compounded of fibres, interwove or decuffa-
ting each other, I know of none fuch, unlefs you will take ligamentary or tendinous fibres for them, which yet are fpread only over the face of fome true membrane.
§. I 3. This cellular web-like fubftance in the human body is found throughout the whole; namely, wherever any veffel or moving mufcular fibre can be traced, and this, without the leaft exception, that I know of, in any part whatever. See remark of §. 10. and of $\$.17$. following,
§. 14. The other elementary fubftance of the human body (§. 2.) viz. concrementum glutinofum cbondrocides, which cannot be truly called either a fibrous or cellular plate, is a mere glue evafated and concreted, not within the fibres, but in faces betwixt them. In the bones this extravafated fubftance is manifert enough; for you fee the fibres very diftinct in the bones of a foetus, in the intervals betwixt which you perceive the veffels running; fo that every bone in the fkull on all fides refembles the teeth of a comb. But this fabric is fo altered in an adult perfon, that a cartilaginous juice being extravafated in the fpaces betwixt the fibres, we fee fmall plates formed of it.
§. I 5. But here the courfe of nature feems to be fuch, that even the filamentary fibres (§. 3.) are all firt formed of fuch a tranfufed glue. And that the membranous or fcaly fibres of the cellular fubfance (8.7.) are thus formed appears, from thofe cellular fibres
produced in the thorax from a concreted va $=$ pour or ferum transfufed through the furface of inflamed lungs, which are thereby conjoined to the pleura; for thefe perfectly refemble the true and natural cellular fubitance. The fame appears alfo from a comparifon of the fœetus with an adult; for the large fubcutaneous cellular fubftance has in a foetus a mere jeily in its fead interpofed betwixt the fkin and mufcles, which laft we obferve very firm in a fætus. This theory is again illuftrated (i.) Synthetically, by the fibrous cake one may draw out from blood by ftirring it round with a probe; and from the membrane, which may be in like manner formed thence according to the experiment of Ruyfch, and Albinus's membrane from mucus; laftly, from the formation of a polypus, filk and glue. (2.) Analytically, we fee, from difeafes, that the bony fibres are formed firft of a compacted glue; becaufe the hardeft bones, by a diffolution of their glue, return again into cartilage, flefh, and jelly: fuch experiments we make on the bones of fifh and other animals with Papin's digeftor.
§. 16. The antbropogenefis, therefore, or formation of the human folids, feems begun when a gelatinous water, like the white of an egg, with a fmall portion of fine cretaceous earth, runs together into a thread, from fome preffure, the caufes of which are not our prefent concern. Such a filament, by the mutual attraction of cohefion, intercept-
ing fpaces betwixt itfelf and others, helps to form a part of the cellular net-like fubftance, after having acquired fome toughnefs from the neighbouring earthy particles, which remain after an expulfion of the redundant aqueous glue. And in this net-like fubftance, wherever a greater preflure is impofed on its fcales or fides, they turn into fibres and membranes or tunics; and in the bones, laftly, they concrete with an unorganifed glue. (§.14). Hence, in general, all parts of the body, from the foftelt to the hardeft, feem to differ no otherwife than as the former have more of the earthy particles more clofely compacted together, with lefs of the aqueous glue; while in the fofteft parts there is lefs earth, and more glue. See the remark of §. 3 .

LEC.

LECTUREII.

Of the sellular fubfance and its fat.

§. 17. $\sqrt[H]{ } \mathrm{E}$ have now feen (§. IO.) that the cellular web-like fubftance is made up of fibres and plates, which are neither hollow nor vafcular, but folid; although they are afterwards painted by an accefion of veffels. But the principal differences of its fabric are the following. In fome parts of the body it is open and loofe, being formed of long and diftant plates; in others, it is thin and compact, being made up of fhort fibres, concreted together. I find it thineft and of the fhorteft fibres, betwixt the fclerotica and choroides of the eye; and betwixt the arachnoides and pia mater of the brain. I alfo find it very thin, but more tender and confpicuous, betwixt every two coats of the inteftines, ftomach, bladder and ureters: 'tis alfo thin and empty under the fkin of the penis, forehead, and in the lungs, in which laft we call it veficles. 'Tis compofed of yet longer fibres, where it is extended over the larger veffels, under the name of a capfule or vagina; as through the vifcera, and particularly the liver and lungs. Its principal ufe is to bind together the contiguous membranes, veffels and fibres in fuch a manner as to allow them a due or limited motion. But the cellular fubitance, fo far
as we have hitherto defcibed it, hardly ever admits of any fat into the cells; which are rather moifened by a watry vapour, that is fomewhat gelatinous and oily, exhaled out of the arteries and received again into the veins. The truth of this is eafily demonftrable from injections of oil and water, either alone or with fifh-glue, made in all parts of the body. When this vapour is, by inflammation, too glutinous, or, from any caufe, abfent or abolimed, the fmall fibres grow one to another, and the contiguous membranes or plates are cemented into one, with a lofs of their motion.
§. 18. The cellular fubftance and its plates or fcales, are ftill more loofe and open where it divides the mufcles and all their fibres (even to the ultimate fibre) ; and likewife where it furrounds and furtains the leaft veffels with their free motion. That within the cavities of the bones is alfo made up of bony plates, with membranous ones intermixed; and laftly, it is the moft loofe and open of all, round the furface of the body on all fides, betwixt the mufcles and the 1 kin .
§. 9. Into the empty faces of this cellular fubftance, (§. 18.) almoft every where, in the fortus is poured at firt a jelly, and afterwards a fat; which at firft is grumous or curdy, but afterwards clear and leafy; namely, a thick, infipid, inflammable liquor, which, in a cold air, congeals, in fome degree, into a folid, efpecially about the kidneys
neys of herbivorous and horned cattle; but is fofter and yellower in carnivorous ones; and while they are living, it feems a mere fluid, or very nearly fo.
§. 20. Through this cellular web-like fubftance the fmall veffels are fpread and ramified in all parts of the body, from whofe arterial extremities the fat is depofited into the cells, and afterwards abforbed by the venal orifices. This paffage, from the arteries into the adipofe cells, is fo free and Thort, that there muft needs be very large mouths by which they open, and by which they give admittance to injected mercury, air, water, diffolved fifh-glue or jelly, and oil not excepted, which is always very fluggith in paffing through the veffels, even of living animals. The oily fat, in this fubftance, is feperated and expelled from the artery, not by any long ducts, but by: tranfuding on all fides through the whole extent of the veffel; infomuch that when an artery is filled or injected with water, there is no part of the furrounding cellular fubftance, but what fwells with the moifure. How quickly it is collected from the arteries, appears from the fpeedy renovation of it, by a returning fatnefs after acute difeafes. See §. 25 .
§. 21 . But this return of the fat abforbed by the veins, we are taught from the fudden effects which labour or exercife of the mufcles more efpecially has in confuming the oil of very fat animals; alfo from the
confumption of our fat in fevers, and from the cure of dropfies, where the water tranffufed into the cellular fubitance, is in a manner abforbed and thrown out by the inteftinal tube ; and laftly, from the tranfuding of water and oil from the venal orifices, when injected by the fyringe. Whether any of the nerves pour out their contents into, or are fpread upon, the adipofe cells, is an improbable queftion. But 'tis certain they in moft parts run through this fubftance, and hereby divide, in their courfe, into the minuteft filaments, fo fmall that you can no longe: trace them by the knife. But then the fat is both infenfible and unirritable.
§. 22. With regard to the fponge-like communications of this fubfance, 'tie remarkable, the intervals or fpaces betwixt the plates or fcales that make up their fides in the cellular membrane, are every where open, and agree in forming one continuous cavity throughout the whole body. This appears from the inflation which butchers make by a wound of the 1 kin, and which being once received into this fubftance, is eafily driven fo as to raife the 1kin all over the body; and likewife from an emphyfema; in which the air received by a wound of the fkin, being retained, caufes a fwelling throughout the whole furface of the body ; and finally from difeafes, in which a watry or ferous humour is depofited into all the cells of this net-like fubftance, throughout the body. That none
of the cellular fabric is excepted from this communication, appears from wounds or accidents, wherein even the vitreous body itfelf of the eye has received the flatus of an emphyfema; and again from difeafe, in which the gelatinous ferum of a dropfy has been found transfufed even into the cavernous bodies of the penis.
§. 23 . The great importance and ufe of this cellular fubftance, in the animal fabric, muft be evident to all who confider that from this part alone proceeds the due and healthy firmnefs, frength and ftability not only of all the arteries, nerves and mufcular moving fibres of the body, but likewife of all the fiefhy parts and vifcera, which are made up of the former, folded together within this fubftance: and even the figures, cavities, pliability or flexures and motions of the foft parts depend entirely on the cellular membrane, in fome places of a lax and in others of a more clofe and hard fabric. That out of this fubftance joined with veffels, nerves, mufcular and tendinous fibres (a great part of all which are before formed of this fubftance only) all the vifcera, all the mufcles and glands, with their ligaments and capfules, are entirely compofed; and that only from the different length, tenfion, quantity or proportion of this the diverfity of our glands and vifcera arifes; and laftly, that this alone makes up by far the greatef part of the whole body, as we are certain, although the whole
whole be not formed out of cellular filaments of this kind.
§. 24. The ufes of the fat are various; as to facilitate the motions of the mufcles in all parts, leffen their attrition againft each other, and prevent a fliffnefs or rigidity ; it fills up the intermediate fpaces betwixt the mufcles in fuch a manner, with the cavities about many of the vifcera, that it readily yields to their motions, and yet fupports them when at reft ; it ferves as a ftratum or bed to conduct and defend the veffels in their courfe to all parts; it gives an uniform extenfion to the fkin, and ferving as a cumion to eafe the weight of the body in many parts, at the fame time it renders the whole of a comely, agreeable fhape: it probably by returning and mixing with many of the humours, abates their acrimony; it has a principal hare in forming the matter of the bile, and by tranfuding through the cartilaginous incruftations of the bones, it mixes with the articular liniment or fynovia; alfo by exhaling in a living perfon from the mefentery, mefocolon, omentum and round the kidneys, it lubricates the furfaces of the vifcera with an oily emolient vapour, and by interpofing betwixt their integuments, prevents their growing one to another.
§.25. The fat is depofited into the cells of this fubftance by much fleep, with reft of body and mind; whence being collected in too great a quantity, it proves injurious by comprefling
the veins, and by caufing too great a refiftance to the heart it makes a perfon fhort-breathed and liable to an apoplexy or a dropfy. The fame humour is repelled from the cells into the veins, and being rapidly moved along the arteries, the exceffive motion will not allow it to go off laterally by the fecerning pores to the cells: whether this celerity of the blood be, by violent exercife, watchings, cares of the mind, a falivation ora fever. Thusit caufes an increafe of acute difeafes, tinges the urine of an high colour, and forms a great part of its hypoftafis or fediment. After a fudden confumption of it, 'tis foon renewed again from good juices, or healthy humours : but in a languid valetudinary habit, a gelatinous ferum, inftead of fat, is depofited into the cells; and this caufcs the dropfy we call anafarca, affecting the whole habit, together with an external hydrocele or watry fwelling.
REMARK.

Hitherto we have furveyed the œconomy of nature in her wife formation of the moft fimple folid machinulæ of our body, namely fuch parts as by their form and elaticity are capable of a reciprocal action, fo as to perpetuate for a number of years the motion that is once given them. There we fee the has formed of the moft permanent earthy particles incrufted with an oily glue; which as they are prepared by a continued undequal attrition of fluids through a numerous $\mathrm{fe}-$ ries of veffets, muift receive a fpherical figure*, that will be apt to change by compreflure, at

[^5]leaft on their furface, which confifts of a foft yielding glue. Such particles then having the fame power of mutual tendency or attraction, will each of them apart be fpherical; but when two or more of them meet in contact, their furfaces muft yield in proportion to the denfity and vicinity of their central contents, and from round, become depreffed fpheroids or cakes, whence both their contacts and cohefion will increafe, yet fo as to allow a free motion of the central parts to flide one by the other fo long as the quantity and tenacity of the furrounding glue anfwers to the moving diftractile force applied. A number of fuch parts then united longitudinally will form a fimple, elaftic and diftractile fibril; or fix of them conjoined together, at equal diftances, will form a fimple, elaftic and leaft globule: and thofe we fee make the primary and moft fimple inftruments of motion in an animal body, to the ftate or difpofition of which all the other folid or fluid parts they compofe correfpond in the ftrength and action. Here the folids, as the main fpring, have the predominant ruling force over their elaftic contained fluids, which, as the regulating or weaker fpring muft anfwer in their nature and motion to the former; whence the diverfity of native conftitutions. - If the central points of thefe earthy ftamina, in a fibre or globule, come clofe enough to caufe a due cohefion of parts, which may fufficiently yield to and return the given impulfe required, 'tis faid to be healthy and robuft. If their cohefion be too clofe, and connecting glue too tough or ary, they are faid to be rigid and unactive; but if they recede farther, have a glue too watry, and cohere lefs than fuffices to receive and return the due vi-
vibrations, they are then faid to be weak and lax. And thefe two laft are the morbid condi. tions which call for the care of the phyfician. What has been faid of thefe primary fimple machinula is true in a greater degree of the more compound membranes, veffels and vifcera which they compofe; and alfo of the lymphatic, ferous and red fopherules, with refpect to their conftituent parts, and to each other.

Hence we fee, (1) that life is the mere motion, and bealtb a certain latitude or degree of that motion, betwixt the elaftic folids and fluids, extended through a feries of vafcular parts gradually more compounded. (2.) That an excefs or defect in this motion alters the texture towards death or difeafe. (3.) That moderate exercife repeated makes the parts Arong and healthy, by keeping them moveable upon each other, by expelling the redundant watry parts, and giving the whole glue a due firmneis and cohefion. (4.) That one of the leaft veffels clofed into a fibre muft be ftronger shan that veffel was before? from the increafed contact and cohefion. (5.) That a callus is tougher and lefs diftractile than original flefh? becaufe it is lefs vafcular and without the interpofition of cellular fubftance; whence alfo it will be little or nothing perfpirable. (6.) That the ftrength, rigidity or laxity of the fluids and fol ids are correfpondent one to the other; i. e. lax folids will make lax thin fluids, whence a weaker reaction of them in the veffels, \&cc. which will pave the way to flow, cold difeafes; as the contrary will difpofe to acute inflammatory difeafes. (7.) That aftringents are fuch as approximate the folid ftamina and thicken their connetting glue; whence they fop evacuations
by thickening the humours and leffening the diameters of the veffels: fo that given fparingly in laxity of the folids and fluids they corroborate ; but in excefs, and in old, laborious rigid fubjects, with an inflammatory lentor, (or even in a cold vifcidity, unlefs joined with fimulants) they coagulate the juices and fupprefs the actions of the folids. (8.) That oils relax without weakening, becaufe they have a greater tenacity than water ; which laft diffolves the connecting glue and weakens the automatic action or elafticity of the flamina and fibres thence arifing. For which reafon large and fudden evacuations leaving the folids loofe and unactive upon the fluids, caufe faintings and weaknefs. (9.) We fee that where there is a natural laxity of the blood and its veffels, as in women and children; where they move with a greater impetus than fuits their cohefion, as in fevers and periodical hæmorrhages; or where the connecting glue is too much diffolved by a putrid alcaline contagion, as often in eruptive and epidemical fevers, there may be an extravafion (according to the degree or multitude of thofe caufes) either of ferous or fanguineous fluids into the cellular fubftance of the fkin, and other larger internal cavities, without a rupture of veffels, in which manner flow the courfes of women. Hence by a diffolution of the connecting glue, from a venereal or fcorbutic acrimony, the bones, vefiels and the elaftic globules break eafily; whence frequent hæmorrhages with livid cutaneous focts, \&c. And thus hæmorrhages happen ofteneft in the nofe and lungs, becaufe the arteries have their coats there thinner, and in the lungs have little refiftance or confinement from the empty cells, and very thin epithelium or internal cuticle: whence
whence an infection is fooner fent to the blood through thefe parts, and confumptive ulcerations here oftener take place. (10.) We fee that from the birth, the ftrength and cohefion of the folids gradually increafe with age, while the fluids continue lefs altered, till at length a fenile weaknefs and natural death enfue from the dead refiftance of the rigid membranes and veffels not yielding to the now weaker nervous influx; the nervous fecretion daily leflening and the cortex indurating as the vefiels clofe by age. (1.1.) We fee how an injudicious internal ufe of aftringents powerfully contracting the larger veffels, may rather increafe than ftop an hæmorrhage, and fome local fluxes; or by caufing too great a pufh upon the fmaller veffels in a weakened part, may produce one de novo. (12.) We fee that in the warmer countries and feafons of the year, where there is always a greater tenacity of the fluids and a weaker fpring or action of the folids, bleeding is oftener called for to relieve the tone of the veffels in full habits; and this efpecially in wine countries, as fouth of France, Spain and Italy; for that from its globular matter and moderate increafe of the circulation breeds blood very faft. (13.) We fee why in moft fevers, and in colder countries or feafons, 'tis neceffary for the patient to have a moderately warm room, warm bed, warm drinks, fleep, \&c. by which the tenfion of the veffels is relaxed, and tenacity of the humours leffened; from both which a fever is augmented. (14.) We fee how a thick moift air in foul weather, feems heavy to us, though it be much lighter than a dry ferene air? becaufe from its lefs preffure on the body the spring of the folids upon our fluids is weakened. (15.) Why onions, muttard, pepper and other alcaline
alcaline ftimulants are ufed to promote the digeftion of putrefcent meats, pork, falt fifh, $\& c$. ? becaufe they are antifeptic and by increafing the mufcular ftrength of the fomach make them ftay there not too long. (16.) Why a dropfical patient fo eafily relaples after freeing him from his waters? becaufe being lodged where the fibres have the leaft tone and elafticity, as in the lymphatics and cellular fubftance, where corroborants feldom penetrate, 'tis very difficult to reftore or confirm their firft ftrength. (17.) What pains are increafed and what leffened by bloodletting ? namely it relieves in full habits with a pleuritic or fizy blood, but where rheumatic or hyfterical pains come from too great a laxity of the fmallerveffels and a loofe watry fluggifh blood, Gum, Guaic. Cinnab. Cort. Peruv. Rad. Valer. Rhei \& Camph. are preferable to the lancet, as that increafes the generating caufe. (18.) Why inflammatory tumours are painful and refifting, but œdematous ones indolent and pitting? becaufe the lymphatics and cellular fubftance, the ufual feat of the laft, have but little elafticity and fenfibility. §.21. (19.) Why inflammation and pain are always lefs by bleeding; and how it may provoke perfpiration, fweat or urine? viz. by abating the compreffure of the excretory ducts, by leffening the force and diftention of the blood veffels, and by relaxing the blood and humours themfelves urging upon the diftreffed part. (20.) Why the pulfe of a fat perfon compared with that of a lean one is weak and languid to the touch ? namely becaufe the ictus is loft in a foft, unrefifting and unelaftic fubftance, and receives little or no increafe or return from the well-cloathed contiguous bone. (21.) That fudorifics, diuretics and forrifications are much preferable
preferable to tapping or ftrong purging in dropfies; becaufe by exhaufting the parts gradually they better contract and recover their loft tone, while the better elaftic or globular parts of the juices are ftill retained in the habit. (22.) That there are no proper or peculiar adipofe veffels and receptacles, only fuch as are alfo common as well to the watry and gelatinous as by a greater laxity or impulfe to the ferous and even red parts of the blood from whence the fat laterally recedes. Laftly, as the cellular fabric furrounds every individual tubulus or nervous fibril, both in the encephalon, in its progrefs thence, and in its ultimate expanfion (23); we fee thence how a weakening of this fabric, by excefs of dram-drinking, tea-drinking and lewdnefs, has reduced the old athletic Britifh conftitution of our anceftors to the modern puny tenerity of habit, obnoxious daily to a train of nervous and other diforders, almoft unknown to our progenitors. And why thefe have worfe effects on the young, witty, ftudious and fedentary; who have a natural tendernefs of the cellular fabric and nervous fyftern; to relieve which, the cortex was timely and happily dif. covered.

L. E C TURE III.

Of the arteries and veins.
§. 26. HE compound membranes made out of the preceding more fimple parts, we fhall hereafter better defcribe each in their refpective places. Of thefe membranes there are feveral common to the arteries; which are elaftic tubes or canals, forming parts of longly extended cones, whofe diameters decreafe as they divide into more numerous branches. But where the arteries run for fome length, wihout fending of branches, as towards their ultimate extremities, their convergency is not very evident ; and at length, where they are called capillaries, and wherever they give paffage to only a fingle red globule, they are either cylindrical or very nearly fo, from the imperceptile diminution ; but their tranfverfe fections are every where and without exception circular, when the artery is full. The common bafis of the cone in all arteries is either in one or the other ventricle of the heart ; and the apex of the cone terminates either in the beginning of the veins, or in the beginning of the cylindrical or anaftomofing part of the artery. In fome places indeed the arteries feem to diverge or dilate; at leaft they become there of a larger diameter after they have been filled or diftended with wax; which poffibly
poffibly may arife from fome foppage of the wax, by whofe impulfe that part of the length of the artery becomes more diftended than the reft. Examples of this kind we have in the vertebral artery, at the bafis of the ikull, in the fplenic artery, in the flexure of the carotid artery, according to Mr . Cowper's injections; and laftly, unlefs all my experiments deceive me, in the fpermatic arteries.
§.27. There is indeed no external adventitious coat perpetual and proper to all the arteries; but the office of fuch a coat is fupplied to fome of them by one fingle external and incumbent integument, which in the thorax is the pleura, and in the abdomen the peritonæum. In the neck a fort of thicker cellular-fubftance furrounds the arteries; for the membrane of the pericardium which on all fides clofes round the aorta, foon difappears by changing into the cellular fubftance. The dura mater imparts a capfule that furrounds the carotid attery as it paffes out thro' the hole in the fkull for that purpofe. But the firft true external membrane common to the arterial tube in all parts of the body; is the cellular fubftance ($£ .1 \%$) which in fome parts, (as in the thorax) we often fee replenimed with fat. (§. 19.)
§. 28. This cellular coat is in its external furface of a more lax, open texture, painted with a great many fmall arteries and veins; and it has nerves running through its fubftance, which are none of the fmalleft.

There is fometimes fo much of this cellular fubftance about the artery as might occafion one to think it hardly belonged to it as an external coat or lamella, but rather as fome foreign net-work added to this veffel. Thus we find it in the arteries of the neck, groins and fubclavians; in the mefenteric, cœliac and hepatic arteries. And thefe are the vaginæ or capfules of the arteries, formerly obferved by fome eminent anatomifts.
§. 29. As this cellular coat advances more inward, and nearer to the light and capacity of the artery, it becomes more denfe or folid, and is tied more clofely together by fmall fibres, infomuch that there appears to be no tendinous coat of the arteries diftinct from this laft part of the cellular fubftance; as is evident from maceration, whereby the inner ftratum of this arterious tunic changes into a cellular fabric.
§.30. Within the former, and nearer the light or capacity of the artery, it has a coat of mufcular fibres, which are in general imperfect circles; that is to fay, no fibre any where makes a compleat circle round the veffel, but a number of fegments conjoined together, with their extremities turned off fideways, feem to form one ring round the artery. Thefe fibres, in the larger arterial trunks, form many ftrata or plates one within the other, appear of a redifh colour and are remarkably firm and iolid; but in the fmaller arteries they are by degrees more difficult
difficult to demonftrate. Within this there feems to be a fort of continuation from the former cellular membrane from betwixt the mufcular fibres, although it be among them invifible, and here very difficult to demonfrate ; into the cells of which a chalky concreting matter is poured when an artery offifies.
§.31. The innermof coat of the artery is thin or cuticular, and finely polifhed by the influent blood; fo as to form a fingle incrufration that every where lines the flefhy fibres, ($\$.30$.) which being fomewhat loofe, or not very continuous one to the other ; this innermoft lining prevents the blood from infinuating into the fpaces betwixt them. 'Tis every where fmooth and without valves, altho' from a fort of mechanical neceffity it fometimes, at the origination of branches; forms a projecting eminence; as we fee at the branches produced by the arch of the aorta. Yet in arteries of the vifcera the innermoft coat is fofter and more lax than what we have defcribed; and tis there in a manner wrinkled and almoft friable.
§.32. The arteries themielves bave arteries which are more particularly fpread thro' their external cellular coat ; and fpringing on all fides from the next adjacent fimall arterial trunks, form numerous, branchy net-works, which are all of them indeed very minute, but plainly appear, even in the fotus without injection, to be very numerous. We fee
alfo there are nerves which defcend for a long way together through the furface of the artery, and, at laft, vanifh in the cellular fubftance of the veffel; of which we have a fpecimen in the ex-and internal carotids, and arch of the aorta. And from thefe, as in other mufcles, the arteries feem to derive a mulcular and convulive force*, very different from that of their fimple elafticity. Does not this force fhow itfelf plainly enough in fevers, faintings and paffions of the mind? But the artery, abfracted from its nerves, is in a manner infenfible and unirritabie.

R E MARK.'

* This is a fucceffive contraction of the arterial fibres, like thofe of the inteftines, from the larger to the lefs diameter, or the reverfe ; by the firft, the blood moves quicker in a certain trunk to the veins, as in blufhing, anger, icc. by the laft, it reverts back to the heart in faintings, hyiterical fits, \&cc. Hence come the pains, improperly called flatulent, which are local cramps of the artery, beyond which you will fcarce feel any pulfe, but before it a ftrong one; whence, in hyfteric, and other nervous cafes, you have often a pulfe in one wrift and little or none in the other. When violent in the carotids, it often kills by an apoplexy, that is now a-days very frequent, and in which bleeding avails little. Seizing the heart itfelf, it often kills fuddenly, without leaving any apparent caufe, upon diffection. (V. Willifii Cap. 8. de apoplexiâ obf. wlt. in Theologo). By this periftatic motion D . थी
of the arteries, the paffions quicken, retard 0 or fupprefs the renal, uterine, hepatic, lactiferous, falival, and other fecretions; being a great key to many otherwife unintelligible fymptoms, \& c . See §. 44 and 553.
§. 33. The fections or divifions of arteries fhow themfelves with a round, light or hollow capacity, becaufe they are elaftic; and this is the reafon why, from fmall arteries, as thofe of the teeth, hæmorrhages are fometimes fatal. The aorta, indeed, of the thorax and abdomen, the carotids of the neck, and fome other arteries of the dead body, from their leffened extenfion, appear fomewhat flat or depreffed; but their round figure or circular fection is every where reftored by injection. Their elafticity is alfo evident in that powerful compreffure, which a fegment of a large artery makes upon the finger that diftends it. In the living body, indeed, this force yields to that of the heart, but inftantly recovers itfelf, when the heart is relaxed, and reftores the artery to its former diameter; and this makes the pulfe, whofe full explication ought to be preceded by an hiftory of the heart : at prefent, it may fuffice for us to fay, that all the arteries have this pulfation, although the fyftole and diftole thereof can be perceived by the finger, only in the larger ones, and not in the fmaller ones naturally; but by an increafed motion of the blood even the leffer ones make a violent pulfation, as we fee in an inflammation.
§. 34. The
§. 34. The frength of the arteries is conliderable enough, but as the denfe, hard network of the outer cellular coat (§.29.) refufes to yield to a diftending force, it breaks without much difficulty, almolt eafier than the coats of the veins; and from thence aneurifms often arife. But in general, the trunks are, in all parts of the body, weaker, and the branches fronger in their coats; whence the impulfe of the blood may exert a confiderable effect upon the former, but leaft of all on thofe of the limbs. From hence it is, that aneurifms are moft frequently formed near the heart ; for in the lower extremities, the ftrength of the arteries, and of the veins too, is much increafed.
§. 35. With regard to the courfe and geneneral diftribution of the arteries, nature has every where difpofed of them in places of the utmoft fafety, becaufe wounds cannot happen to the fmaller of them without danger, nor to the larger without lofs of life. The fkin is fpread with numerous fhort and fmall arterial trunks, but the larger ones, defended by the fkin, creep along betwixt the mufcles and the bones well guarded.
§.36. In the particular divifion or ramim fication of an arterial trunk, each branch fends out fmaller circles by a numerous fubdivifion; the laf extremities of which, yous will fcarce be able to trace. Here the lights or fections of any two branches taken together, always exceed the light of the trunk
$D 2$ from
from whence they come, in nearly a fefquialteral proportion, or as one and a half to one, or fomewhat lefs. Alfo every trunk, juft above its bifurkation or divifion, is fomewhat broader or more expanded. The angles, at which the branches go out from their trunks, are generally acute, either half right angles or nearly fo; to the forming of which angles, as we fee in mechanics, there is required the longeft projection. Inftances of their going off at right angles, or nearly fo, we have in the lumbal or intercoftal arteries; of their going off in a retrogade or reflected courfe, we have one inftance in the coronaries of the heart, and another inftance in the fpinal arteries, which are produced by the vertebrals. But generally fpeaking, thofe, which are efteemed retrograde or reflexed, were fent off, at their origin, in acute angles; fuch as the afcending artery of the pharynx, the defcending one of the palate, the umbilical and mammary arteries. Laftly, we often obferve larger arteries arifing under leffer angles, and fmaller arteries under greater angles: but it is rarely, that we obferve two arteries of a larger diameter run together into one trunk of a lefs; as in the bafilaris, formed out of the vertebral arteries. §. 338. [In many parts the arteries have repeated alternate undulations or flexures, as they run on in a firal courfe, wherein we fee their ciameter often confiderably enlarge; as in the colon, rectum, womb, face, fpleen, \&cc.

This, and the divifion into branches larger than the trunk, greatly abates the velocity of the blood; as does the largenefs of the angle with the trunk, and the number of undulations by which an artery, that lies in a fmall compafs, may be eafily extended to a great length, as in the uterus, \&c.]
§. 37. The arteries are frequently conjoined one to another by intermediate or anafomoing branches, in fuch a manner, that the twig of fome certain artery thall run to meet one of the fame kind from another neighbouring artery, and by joining together with that form one trunk. Intances of this kind we have many, among the large trunks in the inteftines; among the middling ones, in the kidneys, womb, \&c. and among the fmaller, in all parts of the body ; infomuch that there is no one part of the human body, wherein the neighbouring arterial trunks, whether of the fame, or of different denominations, do not form anaftomofes or joinings one to the other, by intermediate, lateral branches. Of fuch rings diverging laterally from the arteries, and returning again into themfelves, we have inftances betwixt the iris and choroides of the eye. The extremities of the arteries, which are either cylindrical or nearly fo, fend off fmaller branches, which, for their extent, are more numerous, and generally difpofed like a net, fo that each branch, by fmaller circles, forms anaftomofes with thofe of its
neighbouring branches. And thus we find it in all membranes.
§. 38. Laftly, one of the leaft arteries is either changed by a continuation of its canal into a vein, in fuch a manner, that the ultimate little artery, which is generally reflected, having furpaffed the angle of its reflection, becomes now a fmall incipient vein; or elfe, a branch, fent out at right angles from the artery, is inferted under a like angle into the branch of a fimall vein. Both thefe kinds of mechanical fabricature of the fmaller arteries with the veins are demonftrated to us by the microicope. And thefe vafcules we fee fometimes large enough to receive only one, and fometimes feveral blood-globules at a time. See §. 6 g. In the vifcera, we find the fmall arteries difpofed not fo much in net-works, as in a different fabricature, wherein the fmall branches defcend very thick or in clufters, parallel to the trunk, fo as to refemble bruhh-pencils, a variety of littie trees or buhes, fmall ferpents, threads, \&cc. according to the variety of the parts, whofe compoftion they enter.
8. 39. Other arteries again pafs not into yeins, but into excretory ducis, like unto veins, which convey a humour different from that of the blood. This continuation of the arteries and ducts is fomewhat more difficult to difcover than the former, (§. 38.) and is generally not fo eafily defcribed or traced by
the injection or liquor that is urged into them.
§. 40. Another termination of the arteries is, by broncbing out into pellucid ones, of much lefs orders, which we fometimes obferve to be not only continuous, but true and direct trunks of the fanguineous arteries; as in the ophthalmic artery of the eye, if you trace its branches into the choroides, then into the arterial circle of the uvea, and laftly, into the colourlefs arteries of the iris, vitreous body, and cryftalline lens: fo likewife, in the red branches of the fame ophthalmic artery forming a net-work in the conjunctiva tunica, to which is continued the pellucid, but arterial net-work of the albuginea or fclerotica: the truth of this appears from inflammations, from the rednefs of parts caufed by warm vapours, from cupping, from artificial emptying and repletion of the arteries, and laftly, to the eye itielf by the microfcope of Lieberkuhn, commonly called folar, applied to the membranes of frogs, by which we fee the colourlefs globules pais out of a red artery, and go off into pellucid continuous ones. The uriniferous ducts or tubes of the kidney are thus continuous with the fanguine arteries. In this ftructure of the arterial extremities, we fee it is no difficult matter to urge any red liquor or coloured injection into the fmaller pellucid veffels.

$$
\mathrm{D}_{4} \quad \S .4 \mathrm{I} . \mathrm{As}^{2}
$$

§.4 I. As for the fmall, lateral, excretory ducts, .we before mentioned, (§.39.) which feem to go off as branches from the fmalleft red arteries, and again laterally detach other trunks; they make a greater refiftance, than the former, to an injection; whence it becomes more difficult to fill their excretory veffels. And this feems to be the fabric in moft of the fmall glands and vifcera, deftined for fecretions; where, with fome dificulty, we can urge a liquor from the arteries into their excretory ducts.
§. 42. Another termination of the arterial extremities, is, into the exbaling veffels; and this is a manner of their ending, very frequently to be obferved in all parts of the body. The whole external and internal fkin, all membranes of the human body, which form any clofe cavity, all the ventricles of the brain, the anterior and pofterior chambers of the eyes, all the adipore cells and pulmonary veficles, the whole cavity of the noftrils, phauces, fomach and inteffinal tube, through which the air has a paffage, are all of them replenifhed with exhaling arteries of this kind. Thefe breathe out a thin, watry vapour or humour, very little gelatinous, which being condenfed or collected together by ftanding, fometimes makes no inconfiderable quantity; and particularly, by difeafe or death, they yield a watry, but congealable lymph, hardening by heat or alcohol. The truth of this is eafily
eafily demonftrable, from the watry fweat that enfues after injecting the arteries with that liquor warm. In fome places, indeed, they exhale not a thin vapour, but blood itfelf, as we fee in the cellular fabric of the penis, urethra, clitoris, and nipple of the female breaft; in all which, the blood itfelf is naturally poured out. Does not every fecretion, that is made in true glands or hollow cryptr, bear fome analogy to this exhaling fabric?
R E M A R K.

Even the whole encephalon and nervous fyftem are a kind of cylindric, exhaling veffels, whofe contents are, in part, elaftic globules, and move the floweft of any juice; in fome nerves, by tubular attraction and arterial impulfe, only modulated by impulfions of objects one way, and (in fome) of the mind the other way: this juice, moving in the organ immediately by continuity, moves the nind, as the mind again thereby moves the organ, not by any flux, but by a transfered motion; as when 10,000 ivory balls fill a tube, if you put in one more it will inftantly thrult out another at the oppofite end.
§. 43. Whether or no, in all parts of the human body, the pellucid veffels, (§. 40.) arifing from the fanguine ones, and carrying a humour thinner than blood, again fend out other fmaller veffels to be fubdivided into ftill leffer orders? We feem, indeed, not to want examples of this, in the manner propofed
pofed to us by the celebrated Boerhaave and other profeffors. That the aqueous humour is feparated by very fine veffels, generated from the colourlefs arteries of the iris, is, indeed, more than probable. That the red coloured veffels, in the cortical fubitance of the encephalon, feparate a juice, pervading the medullary fubfiance, by the intermediation of other fmaller veffels, we are almoft certain. And the like we are perfuaded from an eryfipelas, or yellow inflammation, arifing from the yellow or ferous globules, impacted into fmaller veffels.
§. 44. It may be then afked, if there are not yellow arterious veffels of a fecond order, which fend off lymphatic ones of a third order, from whence, by degrees, ftill leffer kinds of veffels branch out? fuch a fabric does not feem agreeable to the very eafy tranfition that is made by the blood, mercury or wax into the exhaling and peripiratory veffels; into the uriniferous tubuli, with the adipofe and pulmonary cells; nor is it very difficult for the blood to ftray into the lactiferous, lymphatic and lachrymal ducts, whither it hould feem not able to penetrate, if it went through any other intermediate vafcular fyftem, fmaller than the blood-globules, which make the fame journey. Nor can this fyftem be allowed by the great impediment or retardation that muft arife to the humours in a third, and much
much more in a fourth, and leffer orders of yeffels.

$$
R \quad E \quad M A R K
$$

From what has been faid, we fee the arteries act by a double force on their contents; the one, a dead automatic elafticity, (32.) the other, a vital or mufcular conftriction from the nerves in their fabric. (33.) The firft continues to operate in the dead animal; the latter only in the living; and that varioully, as to force and celerity in different organs, or in one and the fame organ at different times, in proportion as their nervous fabric is more or lefs irritated by diftention or acrimony internally, or from pain, paffions or nervous confent externally. This is the force that gives a due form and modulation to many of the fecerned juices, and carries them through ducts and veffels, which, after death, are no longer pervious; and, although the great fhare which it has in almoft all febrile or inflammatory, nervous and painful difeafes, feems little regarded by our Britifh phyficians; yet, fome of the greateft note, and particularly among the Germans, have built their fyftems almoft entirely hereupon: thus, fometimes Hippocrates ealls it nature, Helmont calls it his archeus, Hoffman and Sthall their convulgive fpafms; fo prolific of difeafes. - Thefe are the forces which actuate all medicines fo as to produce their various effects, which are always in proportion to the fate of thefe powers and that of the confined juices on which they aet ; and, therefore, never exactly the fame in two people, or at two different times. - Thefe powers, however, in fome meafure, antagonize one the other; for the greater the arcerial denfity, the lefs their ner-
vous irritability and the reverfe. The former, too much increared, paves the way to all acute, inflammatory and painful difeafes; as the latter does to all now, nervous and hyfterical complaints. This laft is the door-keeper to the catamenia, whofe generating or material caufe is a plethora, but the motive or actual caufe a fever, with a topical or painful irritation of this fluice-keeper in the womb, without whofe permifion, a plethora can never iffue there. This is the milk-maker in the breafts, to which the chyle affords matter to be moulded: milk and chyle being very diftinct humours, \&c. we fee the nervous fyftem influences this mufcular power of the arterial; and that again acts upon the nervous, both as to the fecretions and diftributions. All pleafing pafions and fenfations, as well as painful, uneafy ones, variounly intend or remit the circulation, by acting on this mufcular fabric and force of the heart and arteries. All medicines in themfelves are dead tools, which exert effects varying according to the ftrength or difpofition of this agent, viz. the elaftic and mufcular force of the artery, in conjunction with the denfity or laxity of the humours, and more or lefs fenfibility of the nerves. A fpafm of this mufcular force of the artery in any emunctory, caufes a fupprefion, as in the fkin, kidneys, lungs, womb, 8xc. to be relieved by warn bathing, vapours, femicupium, opiates, nervous and hyfterical medicines, after one fpare bleeding. Any flow ftimulus acting on this nervous and mufcular force of the arteries, caufes a nervous atrophe, whether from pain, want of mucus, putrid or fcorbutic acrimony, \&x. In a word, this is a principal key towards underfanding the nature and cure of nu-
merous fymptoms of difeafes, and the various operations of medicines. See §. 55^{2} and 553.

Of the veins.

§. 45. The veins, in many particulars, (§.36.) refemble the arteries. Their bafis is in the ventricles of the heart, and their apices in the extremity of each branch, thro' all parts of the body, excepting one inftance in the liver. And, in a great number of parts, they run parallel with the arteries, one by the fide of the other. But the veins differ from the arteries in various refpects, as we fhall now fee.
§. 46. The membranous fabric of the veins is thin, every where fmooth, and very difficultly feparable into diftinct coats or membranes, in which there are but few places, wherein one can demonftrate mufcular fibres. Nutwithftanding this thinnefs of their fides, the veins are, in moft parts, very firm, and do not eafily burft with inflated air; being, in moft inftances, fronger than the arteries, if experiments do not deceive us. But they burft much more eafily in living, than in dead animals, as appears from morbid inftances in the arm, face, leg, thigh, Exc. Nor do they fupport themfelves like cylinders after being divided, but they collaple together, fo as to make their light or capacity appear like a ilit; except they are fuftained and hindered from collapfing thus, by fome fronger cellular fubftance
fance placed round them, as we fee in the liver and womb. [They are like the arteries, but flightly irritable, unlefs the ftimulus be of the chemical or more acrid claffes; for, in that cafe, they contract themfelves with a convulfive force, greater in proportion than that of the arteries themfelves.] (§.32.) They have no pulfation, unlefs the venal channel is fomewhere obftructed; or when, in dying people, the blood is thrown back again from the right auricle into the defcending and afcending cava.
§. 47. The veins are much larger than their correfponding arteries, having the fquare of their diameter often double or triple that of the latter, and, in fome places, almoft quadruple; as near the emulgents, and in the venal trunks. They differ, likewife, from the arteries in their courfe or divifion; having more numerous trunks and branches: for to one artery in the limbs, we ufually meet with two veins. The larger veins are alfo branched in a more net-like difpofition, by forming more frequent anaflomofes one with another; for not only the fmaller branches, but even the larger trunks of the veins are conjoined one to the other within its neighbourhood, upper with lower, and right with left, by apparent inlets or inofculations. They affect more than arteries to run near the furface of the body; and through the limbs, neck, head, \&c. they run a long way covered with little more than
than the bare 1 kin ; which is a circumftance we very rarely obferve in arteries: and for the fame reafon, they often go out in their courfe, to a confiderable diftance from the arteries. For, in this cafe, the veins follow the furface of the parts next the fkin, without their correfponding artery, which, in the mean time, defcends to a confiderable depth, attended, in its courfe, by fome fmaller venal branch. In the fmaller branches of the veffels, where they make net-like difpofitions in the membranes, and compofe the internal fabric of the vifcera, the veins and arteries commonly run contiguous one with the other; but here the veins have generally a lefs ferpentine or inflected courfe.
§. 48. The veins have their origin, as we faid before, (§.37.) from the terminations of the arteries. They fometimes arife by a continuation from the inferted branches, or from a reflexion of recurved trunks, of the fmalleft arteries. Others again are either continued from veins lefs than thofe which carry blood, or elfe receive additions and roots from them; as we fee, for inftance, in the lymphatic veins of the thoracic duct. Other veins, of a bibulous kind, arife from abforbing ducts or orifices opening through out the whole extended furface of the body; as in the chambers of the eyes, the cavities of the inteftines, bladder, womb, breaft, peritonæum, pericardium, and ventricles of the brain. For from thefe iffue a watry fweat,
by injecting the venal trunks with that kind of liquor, which eafily refembles an ordinary fweat throughout the whole human body: hence, we meet with injections of water, fifh-glue or oil difilling from the vena portarum into the cavity of the inteftines; of which experiments, we fhall fpeak more largely hereafter in a proper place.
§. 49. Not much differing from the former, are thofe veins which, arifing in all parts of the cellular membrane, or rather fponge-like fubftance, return thin vapours, dropfical waters, and diffolved fat again into the mafs of blood; or which take up again and return the blood itfelf from the celiular fabric of the penis, clitoris, or nipples of the breafts after the venereal act. And that inhaling veins of this kind open into all the glands, is highly probable; where, by abforbing the thinner humour, they leave the remaining mafs of a thicker confiftence; of which we have inftances in the bile, fperm, mucus, \&c.
§. 50. That there are pellucid veins of a fmaller clafs, but refembling thofe which convey blood, appears from the fame experiments, which demonftrate the pellucid arteries $\left(\S . \circ_{0}\right)$: thus in the iris of the eye, there are fmall veins, and in the adnata tunica of that organ, more than a few trunks, which, in a healthy perfon, are naturally pellucid. The larger of thefe veins, which come next
to thofe that carry blood, are much more confpicuous than the arteries of the fame kind; and are ufually called lymphatic velfels; of which we thall fpeak more at large, when we come to defcribe the lacteal veffels.
§. 5 r. Namely, in moft parts of the human body [but in brute animals they are more eafily and clearly difcovered] are found tranfparent veins, often full of a reddifh, yellowifh, and almot pellucid liquor, hardening like the white of an egg with a boiling heat or alcohol; which veins being formed of very thin coats, [have, like the blood-veins, (§.46.) a proportionable degree of irritability, from any chemical or very acrid ftimulus; whence we infer them to be mufcular or nervous, notwithftanding they are pellucid, like the fibres of fifh, frogs, $\delta . c$. .] havefrequent valves or partitions, which make them in thofe places feem jointed, or knotted like a reed, when they are turgid; thefe, by degrees, meeting together, either all or moft part of them, empty their contents into the thoracic duct. But all the lymphatics, in their courfe, meet together in a peculiar kind of conglobate glands, into which they enter, and from the fhape of veins becoming arterial or like converging cones, they divide into fmall branches, and then proceed to meet together again in other little trunks. They are found feated on all the furfaces of the vifcera, in the thorax and abdomen; but are more eafly and clearly E dif.
difcovered in brutes: they run thro the lower part of the face, mufcles of the tongue, the adjacent parts of the neck, and thofe parts of the upper limbs, which are neareft the trumk, as far as the bending of the elbow; throughout the whole length of the mediaftinum, before and behind, and wherever we find conglobate glandules, either in the neck or thorax: the lymphatic veins are alfo fpread through the whole lumbal region that is contiguous to the aorta, the mefocolon and pelvis, veffels and furface of the tefticle; and in the lower limbs wherever they are fupplied with conglobate glandules. Whether they extend further into other parts, throughout the whole body, or through the brain, eyes, hands, feet, back, fore part of the peritonæum, \&cc. remain, as yet, undetermined; at leaft, there are not examples enough in the human body, upon which one can depend to evince the truth of their exiftence. But they are every where to be found upon the furfaces of the vifcera, and about the larger blood veffels.
§. 5\%. The valves of thefe pellucid veffels are compofed of two femilunar, or rather femicircular, projecting membranes, which give way to the fluid that goes towards the larger trunks; fo that, by applying themfelves clofe to the fides of the veffel, they leave a free light or capacity thro' it. But the fame valves, if the contained liqur is preffed back towards the fmaller branches
branches of the veffel, being filled out therewith, fwell or expand, fo as to fhut up the light of the canal.
§. 53. But many valves of the fame kind are alfo found in great numbers within the larger blood-veins. Thefe, joined with the fide of the procceding vein, intercept a fpace, of which the outerfide is the vein itfelf, and the inner the valve, which, by its convexity, ftands out within the bore or light of the vein; fo that the parabolic face or hollow mouth of the valves always look cowards the heart: they are found in all the fubcutaneous veins of the limbs, in thofe of the neck, face, tongue, and in the veins of the penis: at the origin of the larger branches there are two, three, four, and fometimes five of them together, while in their fmaller branches they are only fingle. There are none of thefe valves in the deep running veins of the vifcera; and, therefore, none in thofe of the brain, lungs, heart or liver, or through the whole fyftem of the vena portarum, nor in the kidneys or womb (except one or two valves in the fpermatic vein), nor, laftly, are there any in thofe fmaller blood-veins, which are of a lefs diameter than the twelfth part of an inch. Whether there are any fuch valves in the vena azygos is queitioned; but I have not been able to find any. [Jalves have been fometimes, though very rarely, found in the vena azygos: and at the mouths of the hepatic and

$$
\text { E } 2
$$

renal veins: there I have feveral times obferved a fort of wrinkles in the place of valves. §. 54. In the fmaller venal branches there are a fet of long, fharp-pointed or parabolical valves of a more extended figure, as the vein is fmaller: and thefe make a greater refiftance than the larger valves, to hinder the blood from returning back upon the parts.
§. 55. The common ufe or office of there valves is, to determine the preffure that is given from any quarter upon the veins, towards the heart, by allowing no opportunity to the venal blood, that has once entered the trunk, which they intercept, to flow back to the branches. For fince the coving fpaces of the valves open upwards towards the heart, the blood enters into, and expands them. Thus thofe parts of the valves, which fland out with a free motion within the light of the vein, approach each other towards the axis, until the oppofite fides, by meeting together, thut up the tube. This we know from inflations, ligatures and injections of the veins; for you never can force a liquor eafily into the veins, by urging it againft, or contrary to, their valves. They do not, indeed, every where thut up the whole cavity of the veins; but where they fhut not clofe, they always intercept the greateft part of the light.
§. 56 . Another office of the valves in the veins, feems to be for fuftaining the weight
of the blood, that its upper columns may not gravitate upon the lower; nor the blood, flowing through the trunks, make too great a refiftance againft that which follows it through the branches. For if, from the flower return of the blood into the veins, its weight or preffure fhall, in any part, much exceed the impulfe, that drives it on, fo as to caufe fome part of the column to defcend by its weight; 'tis, in that cafe, immediately catched and fuftained in its relapfe by the next adjacent valve, which hinders it from urging againft the next fucceeding column, and affords time and opportunity for fome contiguous mufcle, by its preffure or concuffion, to fend forward the faid column. And this is the reafon, why valves are placed in veins of the limbs and neck; in which parts, they are both more numerous and more robuft than elfewhere. And this is the caufe, from whence varices or herniæ are formed in the veins, when the blood, entering the hollow valves, urges their folid convexity downwards, and makes the vein dilate in that part.

LECTURE IV.

Of the circulation or motion of the blood through. the arteries and veins.
§. $57 . \mathrm{HE}$ arteries and veins, which we have hitherto defcribed, contain either blood or lymph. The red blood, whofe nature we frall explain when we come to treat of fecretion, fills the arteries and veins by all feen, or commonly known, which we call thofe of the firft or larger order, and which have their origin in the heart. Thefe the blood fo fills in a living perfon, that, at fome times, they are very loofely and imperfectly diftended by it_{2} and, at other times, they are rendered very full and turgid. After death, the veins are found fuller of blood than the arteries; but fometimes, when the perfon has been dead a confiderable time, the fmall veins have been found diftended with air. But the arteries of a dead body commonly contain only a fmall quantity of blood.
§. 58. This diftending blood then, in a living perfon, is rapidly moved through all the faid veffels. The truth of which is demonftrated to us from wounds, by which the patient foon expires, from the lofs of fo much blood, as was neceffary to diftend and move the veffels for the maintainance of
life;
life; which lofs of blood happens almoft inftantly from the larger arteries, and fometimes very fuddenly from the fimaller ones: (fee §.60.) but from the veins, unlefs they are fome of the largeft, this lofs of blood is more flow and difficult ; yet, are there not wanting inftances of fatal hæmorrhages from wounds of the veins, not large as in the inner corners of the eyes, under the tongue, \&cc. In hort, the experiments made upon living animals, fufficiently evidence the impulfe and rapidity with which the blood is moved, particularly through the arteries; where, in the larger trunks, it runs moft fwiftly, at the rate of 149 to 74 feet in a fecond; but, in the leaft of them, it runs above twenty times flower. And, in the larger veins, where it moves fo much fafter than in the fmaller, the blood's celerity is lefs than in the arterial trunks, in the fame proportion, as the lights or fections of the arteries are lefs than thofe of the veins, i. e. twice or almoft thrice flower. Another argument of the circulation, is the compreffure and relaxation of a vein, whereby the blood is promoted from one valve to another.
§. 59. This motion of the blood is in the veins uniform or equable enough ; but, in the arteries, it is alternately greater when that veffel is more dilated, and lefs when it is contracted. [This is proved by ocular infpection in living animals.]

E4 §.60. That
§. 60. That the motion the blood defcribes, is a courfe through the fanguineous arteries into the veins, is difcovered from experience. For ift. it is certain, that all the arteries and veins communicate or open one into the other: becaufe often, from ons, and that a fmall artery, all the blood fhall run even until death, not only out of the wounded limb, but from the whole body. Of fuch fatal examples, we have a number from an inner artery of the nofe, from the gums, a finger, tooth, cutaneous pore enlared, from the lachrymal point, from the wuond of cupping on the fkin, and even the bite of a leach. There are, therefore, of courfe open ways by which the blood fpeedily flows from the venal, into the arterial fyftem, and the reverfe.
§.6I. That the blood again in the arteries flows from the heart towards the extreme parts of the body, is proved by a ligature in the living animal. For whatever artery fhall be ftopped by a ligature, a fwrelling enfues in that part betwixt the heart and the ligature, whilft the other part is emptied beyond the ligature, which is the part of the artery more remote from the heart; neither has it there any pulfation, nor if it be there wounded, will it yield any blood. The fame effects which we fee follow from a ligature, are likewife often produced by difeafe; as when fome tumor, by compreffure, के fome aneurifm intercepts the motion from
the heart. Inftances of this kind we have feen in moft of the confiderable arteries.
$\$.62$. But for the courfe or motion of the venal blood, it has been always more doubted of; almoft all the ancients have been perfuaded, that the blood in the veins flowed through them, either from the heart, or from the liver, to all parts of the body. Very few of them have known, that this was an error. Several of them have, indeed, acknowledged it to be falfe in the pulmonary vein: (§. ro7. ult.) as Servetus, Columbus, Valverdus, Johannes Langius, Lambergius, Pigafetta, Arantius, H. Conringius Mercatus, Platerus, Spigelius and C. Hoffmannus, from whom we muft not except Galen himfelf. But that the blood did not move from the heart in the vena cava was known to ftill fewer anatomifts of the ancients ; perhaps, only to Andreas, Cæfalpinus, and from an extraordinary accident to Vefalius, and doubtfully to H. Dietericus. §. 63. Dr. William Harvey is the firft who experimentally affierted the motion of the blood, returning in the veins to the heart, in fuch a manner as to render the whole intelligible, and leave no room to doubt of it. And firt, the valves of the veins (as he obferves) lead us to this truth; for all of them readily tranfmit wind, wax, or other injections to pafs from the extreme or remote part towards the heart; but they obftinately refift giving any paffage to the faid
faid wax or flatus, to pafs back from the heart towards the extreme parts, unlefs you burft or break through them. The fame courfe, which we fee the veins give to wax, mercury or oil injected, muft of confequence be the fame which, by their action, they give to the blood; fince the colour of the refluent liquid will not make any change in its direction.
§.64. Moreover, the valves, placed in the right ventricle of the beart, have fuch a fabric, as we fhall hereafter fee, that they freely permit blood, flatus or wax to pals from the venal trunks of the cava into the heart, but deny any paffage from the heare again into the veins.
§. 65 . Again ligatures, in a living perfon, may make the thing more evident. When the veins of the limbs are tied, either by defign or accident, with the limb itfelf about the hams, arms, ancles or wrifts, the limb below the ligature fwells, the veins fill and diftend themfelves, fo that one may eafily open them, and they make a free difcharge of blood: but, at the fame time, nothing of this kind happens above the ligature, nor are any of the veins to befeen there but lefs conficuoully. The fame phænomenon happens when the veins are compreffed by fwelled and fchirrhous glandules in the vifcera; and from polypus's the veins are often largely fwelled, or enlarged into tumours.
§. 66. The
§. 66. The experiments to prove this courfe of the blood, which have been made in living animals, are ftill more accurate. From them it appears, that, by tying any vein, in a living animal, near the cava, or belonging to the pulmonary veins, that part always fwells, which is moft remote from the heart, all below the ligature appearing diftended with the retained blood, while above and next the heart they are pale and flaccid. From this principle it is, that the ancients are ufed to apply ligatures to the limbs in profufe hæmorrhages, to keep back fome part of the blood, fufficient to fupport life, from returning to the heart, which would drive it into the wounded arteries. Laftly, if the arteries are tied at the fame time with the veins, thefe laft remain flaccid and empty, but, upon removing the ligature from the arteries, the veins are immediately filled.
§. 67. Another proof we have in the transfufions of blood, in which all the vital gore from the arteries of one animal is urged into the veins of another exhaufted of blood, whereby the heart, arteries, and empty veins of the latter become fo turgid, and well replenimed, that they work the whole machine of the animal with a remarkable degree of vivacity, or even caufe it to labour by a plethora. In like manner, medicinal liquors, injected into the veins, have exerted their pperations refpectively; proving anodyne, or inebria-
inebriating in the brain, emetic in the fto mach, purging in the inteftines, or coagulating the blood through the whole body; which is a plain argument they pafs with their virtues firft to the heart, and from thence fent through the arteries to the organs, which they affect.
§. 68. But that the blood paffes from the leaft arteries into the leaft veins, we are clearly taught by anatomical injection; where, by one arterial trunk, we eaflly fill all the arteries and veins, almost throughout the whole body; provided the liquor be watry or very fluxile, fo as to pafs eafily in the veffels of the head, mefentery, heart and lungs.
5.69. Laftly, the microfcope has put the matter beyond all doubt in the pellucid tails, feet, mefenteries and membranous parts of animals, where we fee, that the blood, brought to the extreme parts by the arteries, is poured either into fmall veins, continuous with the reflexed artery, or elfe goes through branches of the arterial trunk into the parallel communicating vein, by which it goes on to the parts neareft the heart. This is the way in which the blood paffes as well into the leaft veins, which are capable of receiving only one globule, as into thofe that are fomewhat larger, being able to admit two or more globules to advance forward in a breaft. But that there is no fpongy or parenchymous interpolition betwixt the arteries and veins, in the general courfe of the circulationa
circulation, is proved both from microfcopes and injections. [For if there were any fuch parenchyma or fpongy mafs betwixt the arteries and veins, the hardening injections would fhow it, by appearing extravafated in a like unfhapen mafs.]
§. 70. The Harveian circulation is, therefore, now received as a medical truth by every one; namely, that all the blood of the human body is carried through the aorta from the left cavity of the heart to the extreme parts or converging ends of the arterial branches; from whence the whole mafs is again tranfmitted into the leaft veins, which convey it to the larger, and from them into the cava and heart itfelf; in which courfe, it perpetually goes and returns during life.
§. 7 I . Yet there are fome inftances where, by paffions of the mind, a fudden revulfion by copious blood-letting, or a vafcular convulfion, the blood has been forced to receed back frorn the fmaller into the larger arteries. And on the other fide, where an obftruction being formed above the valves, the blood has been known to flide back from the venal trunks into their fmaller branches. But then thele accidents are very momentaneous or fudden, and the blood foon returns into its natural courfe.
§.72. The courfe of the humours in the lymphatic veins, which have valves, appears both from the nature of thofe veins and from ligatures; for every lymphatic vein tied, fwells

62 Of the Circulation, \&x.
fwells betwixt the fmaller extremities of it and the thoracic duct ; but grows flaccid betwixt the faid duct and the ligature. All the valves in thefe, like thoie of the bloodveins, give a free paffage for the contents to flow to the thoracic duct: for thus they admit flatus and mercury; but they make a refiftance, and often an obftinate one, to any return the other way.
§. 73. The vapours, that moiften the whole cellular fubftance, the fteams of the abdomen and other venters, are all thus drunk up by the leaft pellucid veins, and fo conveyed along to the blood-veins, that their contained juices may pafs on to the heart; and from thence it is, that an œedema enfues when a vein is compreffed by ligature ; becaufe, by intercepting the courfe of the abforbing veins by the ligature, the vapours ftagnate unabforbed. In the other frnaller veffels, we can make no experiments, but they appear conformable to what we have faid, both by reaton and analogy; and are likewife fupported by the experments of water or other liquors, abforbed out of the cavity of the inteftines, thorax and pulmonary veficles.
§. 74. All juices, therefore, in the human body are drove out of the heart into the aorta to the extreme parts, from whence they are all returned again to the beart by the leaft veins; thofe humours only excepted, which are exhaled or difoharged without

Of the Circulation, \&cc.

without fide the cavities of the body. But to compleat this circle, it remains for us to find out a courfe for the blood, from the right to the left cavities of the heart : but then this pre-fuppofes and requires us to be firt acquainted with the hiftory of the heart, and the puimonary veffels.

LEC.

LECTUREV.

Of the beart.

$\S .75 . \int_{~+~}^{\mathrm{HE} \text { e fabric of the thorax is a }}$ craticle of moveable bones and cartilages, which, in general, refembles a truncated cone, as we thall hereafter ($\$ 278$.) declare more at large. The lateral parts of this cone are two membranous baggs, terminated above by an obtufe end at the firft rib, where they lie very near together, and are diftinguifhed only by the interpofed cellular fubftance. The obliquity of the plane, dividing thefe two bags, is fuch, that the right is much the broadef, and adheres in its defcent all along to the whole middle of the fternum ; while the left bag defcends, not from the fernum, but from the cartilaginous ends of the ribs. The inner central fides of thefe bags, oppofed one againft the other, makes up, what anatomifts have called, the mediafinum. [But in fcending the mediaftinum, is remarkably inclined towards the left of the fternum.] Thefe bags have no where any communication one with the other; fo that the right may be opened or pierced, and the lungs therein may be confumed, without injuring the left. But the fimple denfe membrane, which forms thefe bags, outwardly invefled with the cellular fubftance, is called the pleura,
pleura, being harder than the peritonæum, efpecially where it adheres to the back; but is fomewhat fofter in its fore part. The capacity of the mediaftinum, or that interval which lies betwixt the right and left bag above, contains the thymus, and fome conglobate glandules, fat, and veffels. [This capacity of the mediaftinum is much broader above, yet not inconfiderable below.]
§. 76. Below the fame bags growing broader depart one from the other, and leave a capacity through the whole middle part of their extent, by which the faid bags are divided one from the other. And this capacity is that of the pericardium (§.77.) following. But the bags of the pleura on each fide the pericardium, defcending both before and behind it, terminate finally on the diaphragm on which their bafe is cut off obliquely, with a defcent from before backward; fo that each cavity is before hhorter upwards, as behind they defcend longer and lower. Within thefe bags, then, play the dilatable lungs. The back part, likewife, of thene bags lying near to each other, are yet feparated by the cellular fubfance, which terminates in the pericardium, and includes the aorta, together with the œfophagus or gula: and this we call the poferior mediaftinum.
§.77. The pericardium, or third bag, which firft the cellular fubitance, and then thẹ conjoined pleura, loofely cover on all fides,
as an outer coat, does not, indeed, extend to the fternum, fince the lungs, when diftended, cover the heart before, and interpofe betwixt the fernum and pericardium in their lower part, and the mediaftinum, gradually departing towards the left fide, forms altogether a narrow interval under the lower end of the thymus, clofe to which the lungs meet on each fide; but, this vital fituation you willalter or corrupt, unlefs you are very careful in your manner of opening the thorax. The pericardium has a broad, but fomewhat rounding bafis, which, in younger fubjects, adheres more laxly to the diaphragm; but, in adults, it grows thereto very firmly, by the cellular fubftance fpreading broader to the right, and narrower towards the left. It is fomewhat larger than the heart, which, therefore, may move freely therein. [This membranous capfule, or fence of the heart, was never known to be abfent.]
§. 78. Upwards the pericardium grows gradually fmaller or narrower, ending above the heart in an obtufe conical appendix, extended over the coats of the large bloodvefiels by ftrict cohefion, almoft to the upper edge of the fernum ; that is to fay, the pericardium, having reached the eight large trunks of the blood-veffels, which come out from the heart, adberes to them in fuch a manner, as to form cylindrical productions, embracing each veffel on all fides; whence
it appears like a kind of feptum or partition, betwixt every two neighbouring veffels. But this capfule, furrounding the veffel like a theath, keeps its own ligamentary texture (§. 80.) but for a fmall length ; foon degenerating either into the cellular fabric, which, in the lungs, like a capfule, furrounds and extends itfelf along with all the large arteries and veins, or elfe it finally changes into the external membrane that covers the lungs.
§.79. The arteries of the pericardium are either from thofe of the thymus, which accompany the upper and lower phrenic nerves, or from the larger phrenic arteries, from the branches of the mammaries and mediaftinals, the bronchial, œfophageal and pofterior mediaftinal arteries. The venal trunks of the pericardium have a like origination, but appear with moft evident anaftomofes or openings from thofe of the right into the others of the left fide. The nerves of the pericardium are from the fuperficial branches of the cardiacs, (\$.94.).
§. 80. That which makes the proper fubfance of the pericardium, is a frong, white, compact membrane, more robuft than the aorta itfelf, compofed, at leaft, of two plates, [there plates are, from the denfity of the cellular fubftance, infeparable by art; but the diftinction of them appears plainly enough in larger animals, and from the interpofed veffels] betwixt which, the nerves of the heart, and fome fmall veffels, defcend; bue,
by the help of the anatomical tube, (whereby a membrane, to be divided, is tied or ftretched over the bottom, and preffed by a perpendicular column of water) it feparates into a great number of plates. Its outer furface, being fpread with the cellular fubftance, gives it there a fomewhat rough appearance, while internally it appears fmooth or highly polifhed, and moiftened on all fides by a watry vapour. This vapour, which we have, times without number, obferved in the living animal, compofes fome, though naturally a very fmall quantity, of a water within the pericardium; which is often a littie reddifh, and fubvifcid or gelatinous, and, by difeafe, is fometimes increafed to an immenfe quantity; yet the exiftence of fuch a water here, is injudicioully denied by fome. The water of the pericardium is of a lymphatic nature, becaufe, by the heat of fire, it hardens into a jelly; and from hence fmall fibres and a cellular fubftance (§. 16.) are often formed, joining the heart to its pericardium, in inflammatory difeafes of thefe parts. This liquor is feparated without any intermediate glandules [or any vifible pres] from the fmall exhaling arteries of the hyart, auricles and pericardium; as may is proved by a fimilar tranfudation of water or finh-glue, injected into the large arteries.
§.81. The UJe of the pericardium is, to contain the heart, and to fupport and frengthen
itrengthen it as a fulcrum or prop, that, in contraction, the fibres of the heart may be drawn together without diftorting the large blood-veffels, and that it may lefs fluctuate like a pendulum every way, by altering the pofition of the body. For thele reafons, we find it in all animals that have a true heart. A watry vapour here bedews the heart, hotter and quicker moved than other parts, fo as to hinder attrition and cohefion betwixt it and the pericardium; but when this vapour is dried up or deficient, the pericardium adheres either to the whole furface, or to fome one part only of the heart.
§. 82. The veins, which carry back the blood from the whole body to the heart, if we except thofe of the lungs, (which are tranfmiffory ones) are reducible to two, viz. the cava and the porta. The cava is improperly named in the fingular by anatomifts; fince it is no where one fingle trunk, but partitioned obliquely into fuperior and inferior. The lower of the two large veins, which is the biggeft of them in man, afcends immediately above the diaphragm from the right fide, towards which it is a little convex or gibbous to its union with the upper cava, and together with that in its back part, forms a middie partition betwixt the right and left finus: but the left fide of the venal tube degenerates into the right auricle, whofe fibres are a. continuation from thofe of the cava. F_{3} What

What we have here-faid of the lower capa is alfo true of the upper.
§. 83. Thus, by the meeting of the upper and lower cava, a finus or cavity is formed with a convexity to the right, and inwardly filled with ftrong, flefhy fibres, detached betwixt the two fimple membranes, and varioully interwove. But the fame cavity to the left and forepart, dilates forwards into an almoft perpendicularly oblong or oval form, and terminates above with a blind pointed end, which is free from adhefion with the heart, and lies incumbent on the great artery. This cavity alfo, like the former, has plenty of flemy fibres placed betwixt two very thin membranes, almoft in a parallel pofition, and thefe form a kind of arch extended from the right to the left edge of the whole cavity, and round the anterior half cylinder of this cavity; and thefe mufcular arches are connected together by fome of the leaft fibres. This anterior and firingy part of the cavity is called the auricle; but that to the right and pofterior part is called the finus.
§. 84. Where the lower cava opens into the right auricle, from the tumid column of the left fide of the foramen ovale, arifes a moon-like membrane, naturally compleat in its figure, and from its thinnefs fometimes net-like ; and this being extended round the lower edge of the auricle, grows thinner all
the way as it is incurvated to the right, but does not quite furround half of the auricular circumference, the cavity of which it ferves like a partition to divide from the vena cava. This is, by anatomifts, called Euftachius's valve. The oval foramen, we mall defcribe hereafter, (§.840.).
$\S .85$. The blood of the upper and lower cava, meeting together in this atrium, or porch of the heart, ($\$.83$.) compofed of the finus and auricle, there waits for the relaxation of its ventricle, into which it is propelled by a conftriction of the mufculas threads of the auricle, by drawing the anterior femicylindrical part of the auricle into a plane; while, at the fame time, they bring the middle arch backward, to the anterior and pofterior edge of the beginning of the heart. Thus the blood of both cavæ, being mixed together in the beginning of the heart now dfincumbered, is drove through the edges of the open valve, in fuch a manner, as to urge the tricufpid valves of the right ventricle clofe to the fides of the heart. But the blood is now hindered from returning again into the lower cava, both by the contraction of the auricle, the refiftance of the fucceeding blood from the abdomen, and of the Euftachian valve; and upwards it is hindered from afcending both by the motion and weight of the confequent blood.
§. 86. The figure of the beart itfelf, in fome meafure, refembles half a cone, if F 4 the
the cone be fplit into two longitudinally in he direction of its axis. 'Tis almoft triangular, only the end of it is obtufe, and the lower fide of it is flattened, in proportion to the diaphragm on which it lies incumbent, and is thereby fuftained. But, in expiration, the fituation of the beart, with its apex to the left nipple, is fuch, that the convex furface of the cone is fo inclined within the pericardium, under the great bloodveffels, as fuffices to place its thicker femicitcular curvature, which modern anatomifts call its obtufe margin, directed to the upper and to the left fide of the breaft; in its lower and anterior part, the heart is alfo extenuated into a kind of edge, which is called its acute margin. This is the general fituation of it in mankind; but in brutes the heart, being almoft parallel to the larger axis of the thorax, its apex or tips only extend to touch the diaphragm.
8.87. The whole heart is hollow, having its right or anterior ventricle, communicating into the right auricle and finus, of a more broad and femicircular figure, and not fo long as the pofterior left ventricle; and it terminates in the fhorter tip of the bifurcated apex of the heart. The mouth of this ventricle, where it opens into the auricle, is elliptical, and terminated by a white glutinous margin, more callous than tendinous; over this, plates of mufcular fibres are fpread, and fome fat lies outwardly upon thefe.
§.88. From
§. 88. From the faid callous margin is extended within the heart, a membranous ring, formed by a reduplication of the internal membrane of the auricle, extended fo as to float within the ventricle, to which it was before continuous. But this fame ring, in that part which fluctuates in the ventricle, is fo fplit or divided into three unequal triangular portions, that you may, in fome meafure, give them the name of valves, and count three of them in number, although they are, in fact, only continued parts from one broader ring. Thefe were, by the ancients, named triglocbines or tricupid valves.
§. 89. That part of thefe valves, which lies next to the fides of the heart, is ftrengthened by tendinous fibres, which, meeting together in their courfe, are inferted by very ftrong cords, partly into the fides of the heart, and partly into papillary or cylindric mufcles, which arife upward from the left fide of the right ventricle towards its right fide. The largeft of thefe mufcular columns is that which anfwers to the biggeft of the valves; which is both the uppermoft, and that which anfwers to the adjacent mouth of the pulmonary artery. The leaft of them is the lowert, and feated to the right fide.
§. 90 . The ufefulnefs of this valve is evident enough; for the right auricle being contracted, by a conftriction of the fibres in the partition betwixt the two auricles, the
blood contained in the right porch of the heart ($\S .85$.) being impelled from the circumference towards the axis, like a wedge, feparates the pendulous portions of the ring, called tricufpid valves, and preffes them to the fides of the heart. Thus is filled the right ventricle of the heart, while the largeft or uppermont of the faid valves thuts the pulmonary artery; left the blood, by the weak impulfe of the auricle, fhould flow into that artery; the blood thus received and confined within the right ventricle of the heart, is, by the ftrong contraction thereof, more powerfully expelled into the artery.
§. 9 r . The fenfible flefh of the heart, being irritated by the quantity and weight of this warm blood, is thereby follicited to a contraction: for that the heart, being irritated, will contract itfelf in a perfon dying, or even lately dead, is proved by injections of water, and inflations of air, whereby the heart, then quiefcent, is recalled to its motion.
§. 92. The heart's motion is performed by mufcular fobres, the originations of which, in general, are, from rings formed of the cellular fubftance, compacted into a callous ligament, agreeable to the defcription given in §.87. and with which, all the larger blood-veffels, at their opening into the heart, are furrounded. From thence the fibres, which arife, defcend gradually in an oblique winding courfe towards the left fide, and forward and fometimes a little traverfing each other, the innermoft of them being the moft tranfverfe. In the flat fide of the heart (§. 86.) there are few fibres, and fo thin, that when you have removed the fat, the cavity of the right ventricle appears almon uncovered. That which is called the left ventricle, is, however, very firmly invefted by the fibres; which, after furrounding the fame ventricle, form a flight decuffation in the feptum cordis with the fibres of the right ventricle, and are interwove with them. Some of thefe fibres defcend into the cavities of the ventricles, and form there the fefhy columns mentioned at §. 89 . Others, at the tip of the heart, are wound in a vortical or whirling pofition, the two horns ending by a ftrong fafciculus or bunch in each ventricle. A very thin and fmooth membrane covers the external and internal furface of thefe fibres; but the external membrane, efpecially where 'tis fpread over the coronary veffels, contains much fat beneath it. I have, for my own part, not been able to diftinguifh any thing more particular in the mufcular fabric of the heart, with any tolerable degree of evidence; becaufe it is the peculiar property of the fibres in the heart, to join together in branchy appendices or heaps, in fo ftrict union, that they cannot be feparated without laceration.

§. 93. But

§. 93. But there are feveral eminent anatomitts, whofe ingenuity and communicative freedom I refpect, who have reprefented and defrribed thofe fibres difplayed and $\mathrm{fe}-1$ parated. Namely, the external fibres of the heart, common to both ventricles, defcending to the tip, and, then taking another courfe, to infert themfelves into the feptum; others again, at the tip, to perforate the left ventricle, and return, in a contrary courfe, to the bafis, along the inner furface of the faid ventricle. But the middle fibres, betwixt the aforefaid inner and outermont ones, being varioully inclined towards the bafis, they form the feptum. Which defcriptions, as they are not much different from my own obfervations, I thall make no oppofition to, although I have never been able to fee this difpofition of them fufficiently manifeft, and am acquainted with great anatomifts, who have not herein been more happy than myfelf. [And others have given us figures and defcriptions of ftill different orders of fibres, of which the outermoft run counter to the innermof, while the intermediate are tranfverfe.]
§. 94. Thefe fibres of the heart, like other mufcles, are furnifhed with nerves of their own, very numerous and of various origin. The firft and uppermolt are on the left fide from the ganglion of the intercoftal with the uppermoft cervical nerve, from the trunk of the intercoftal nerve itfelf, and from
from its middle ganglion; on the right fide, they come almoft entirely from the middle ganglion, and not from the uppermoft, but, in part, from the pharyngæal branch of the eighth pair. Thefe nerves defcend into the heart, partly on each fide the aorta, betwixt that veffel and the pericardium, and are diftributed all over the furface ; and, partly, having firft made various fmall plexuffes, they defcend betwixt the windpipe and the great arteries, which come out from the heart; and, here, the right and left cardiac nerves, make one or more plexuffes, joining their fides from one to the other; but fometimes they remain diftinct from each other. From this fame plexus, or plexuffes, other nervous twigs pafs betwixt the aorta and pulmonary artery to the coronary artery of the heart; others crofs the pulmonary artery, and go betwixt it and the left auricle to the coronary artery of the fame fide; and others, finally, defcend behind the pulmonary artery to the left finus and flat furface of the heart. To the cardiac plexus, above defcribed, other large nerves acceed from the fifth and lower cervicals, and fometimes from the phrenic nerve, and from a ganglion of the lowert cervical with the intercofal, to which join large roots from the loweit cervical nerves. The laft defcribed nerves, which are larger, fofter, and more tranfverfely difpofed, mix themfelves with the foregoing plexus. Lafly, there are fome fmall branches, uncertain
as to courfe and number, which join the cardiac plexus from the recurrent and eight pair of nerves, and making various inofcum lations with the intercoitals, are confounded or loft among thofe of the eighth pair. As for thofe nerves, which fome eminent anatomifts have feen afcending from the great abdominal plexus to the heart; through the foramen of the vena cava, I have never been able to find fuch; although it is eafy enough to difcover the diaphragmatics in that place; having ganglions peculiar to themfelves, of which thofe anatomifts make no mention.
§: 95. That thefe nerves conduce powerfully to move the heart, is evident from the common nature of mufcles, and from the increafe which follows in the heart's motion; by irritating the eighth pair of nerves, either at the brain, or the fpinal medulla; and from the languors that enfue upon tying thofe nerves, which proves fatal, either fuddenly or within a few days, even though you happen to make the ligature on but a few of the nerves that come to the heart ; for the intercoftal, and efpecially thofe from the ganglion: of the upper thoracic, cannot be tied.
§.96. But that there are fill other caufes, befides that of the nerves, conducing to the motion of the heart, we are perfuaded from the permanent motion it exerts, while moift in diffected animals, which have it of a like make with man, as in the dog, in which we have obferved it for many hours; and in animals,
having only one ventricle, the motion lafts much longer, even after the heart is cut out from all the nerves that fupply it with any influx. However thefe caufes may be, all our experiments agree in this, that the quiefcent heart, irritated by heat, cold, vapours, poifons, and efpecially the force of impelled flatus, watry liquors, wax or blood, immediately contracis itfelf, by putting all its fibres into a rapid motion, with a confiderable ftrength, which terminates in an entire evacuation of the heart, [by a force fometimes common throughout the whole heart, and fometimes affecting only a particular part of it.]
§. 97. 'Tis, therefore, evident, that the heart, ftimulated by the impulfe of the venal blood, without other affiftance, contracts itfelf. And that this contraction is convulfive, made with great celerity, and a manifeft corrugation of the fibres; whereby the whole heart becomes fhorter, [therefore, throfe learned gentlemen muft have been led into a miftake, who affert, that the heart becomes elongated in its contraction] thicker and harder, fo that the apex or tip advances towards the bafis; which, in living brutes diffected, I have often, with the greatef evidence, obferved. But the heart does not appear to turn pale in this action, in fuch animals as have a warm blood; alchough the mufcular fides of the heart, at the fame time, fwell inwardly, and make a compref-
fure on the blood, like that which we feel upon the finger, when thruft into the contracting heart. But that the heart is confiderably enough emptied in this action, appears from the internal furface being full of eminences, which exactly anfwer to oppofite cavities, and to the thick reticular arms or columns interrupted by finuffes. Finally, the apex of the heart, being contracted a little like a hook, ftrikes againft that part of the pericardium next the thorax. (§.86.) [Forwards, there is alfo a pulfation from the left venal finus, which is, at that time, particularly filled. In expiration, the heart ftrikes violently more upwards and forwards. The truth of both thefe we know by experience, from the touch.]
§. 98. The blood, which is preffed by the contracted heart, endeavours to efcape in all directions; but being drove from the mufcular fides, towards the axis of the ventricle, by the reaction of what is lodged betwixt the venal ring (§.88.) and fides of the heart, the loofer ends of the faid ring are driven forwards, and extended inward at the fame time. By this action, upon the whole circumference of the ring, itnot only becomesextended itfelf, but, at the fame time, throws back a part of that blood into the right auricle, which had before defcended into the cone of the open valve, whofe fides, now approaching, thut up the venal orifice, more clofely as the heart contracts more flrongly, by whofe forct
force the tricufpid valves, as they are called; would be preffed reduplicated into the auricle, if the mufcular nipples or columns did not keep down their edges, and hold them firmly by their contraction (which is the fame with that of the heart) in fuch a hhape, as will extend the annexed chords of the valve, without injuring them. [After expelling its contents, the heart becomes quiefcent, merely from the abfence of a ftimulus. For that the fibres can be able to dilate themfelves, is contradicted by infpection, which affures us all the fibres of the heart exert their contraction at one and the fame inftant; and is no lefs repugnant to reafon, which plainly nows us, that the tranfverfe ftrings and fibres of the heart cannot act alone without the affiftance of the reft.]
§ 99. But the nifus of the remaining blood in the ventricle, now refited by the tricufpids, feeks another courfe; and, whilf it derives the larger of thofe valves, that is feated to the right, (§.89.) from the fide towards the axis of the heart, this leaves open the mouth of the pulmonary artery, which it before covered; whereupon the blood enters there, and, by preffing the valves in the mouth of the faid attery clofe to its fides, it becomes thus filled and dilated by the blood driven into the lungs.
§. 100 . To defcribe this more particularly; from the upper and ponterior part of the right ventricle, a way leads into the pulmo-
nary artery, which is ftrongly connected to the heart by a cellulous, callous ring, from whence the pulmonary artery afcends to the right backward, and difplays itfelf behind the arch of the aorta. The ftrength of this artery is not extraordinary, being much weaker than that of the aorta. But from the inner furface of the artery, where it is joined to the heart, tbree femilunar valves arife, by a reduplication of the arterial membranes extended upwards and towards the axis, in an arch that is flat or obtufe enough; and thefe valves always fluctuate with their edges at free liberty, in a parabolical fhape. The middle of the edges, in each of there valves, is generally divided by a fmall, denfe, callous body of a conical fhape, but made up of inclined planes, whereby each whole valve, in itfelf refembling an half moon, is thereby again fubdivided into two lefs half moons. Betwixt the two membranes of the valve appear fome mufcular or tendinous fibres, partly in a tranfverfe pofition, fome of which hold faft the valve to the next contiguous fide of the heart, leaving fometimes paces betwixt them in a reticular manner. Other fibres afcend from the bafis of the valve, and, by growing to the callous corpufcle, draw back the faid valve, and open its concavity.
§. 10 i . Each of thefe valves, in conjuncsion with the fides of the artery here diverging, intercept a fpace, which is blind or impervious
pervious downward, but open upward in a parabolical hape, as we obferved of the valves in the veins. (§. 53.) When, therefore, the blood is impelled from the fides towards the axis of the contracting heart, it endeavours to efcape in the direction of the faid axis, and, by rufning forth, like a wedge, betwixt the valves, preffes their loofe fail-like edges againft the fides of the pulmonary artery, fo as run freely out of the heart. The truth of this appears from the plain fabric, from injections, and from ligatures.
§. Io2. The blood now received into the pulmonary artery, goes on then to make its circulation through the lungs. That artery is firft divided into two branches, of which the left, being lefs and Morter, enters directly into the fubfance of the lungs; but the right branch, being larger and longer, paffes tranfverfely through the arch of the aorta, and after going a little way behind the faid aorta, enters the correfponding lungs of the famefide. From each of thefe branches, by a multiplied fubdivifion, arife the very leaft arteries, fome of which tranfmit the blood directly into the continued fmall veins, and others exhale part of its aqueous juices into the pulmonary cells. That the blood goes thus directly from the arteries into the pulmonary veins, appears evidently from their Itructure; alfo from a ligature, which, intercepting the blood's courfe, while the heart and $G 2$ langs
lungs ftill urge it, caufes an aneurifmatic dilatation of the artery; and from polypuffes, by which the mouth of the pulmonary artery being obftructed, the right cavities of the heart become monftroufly enlarged, and at length burft, while the left remain empty. Laftly, from injections; for water, firh-glue, and milk, are very eafily forced from the pulmonary artery into the vein, and from thence into the left cavity of the heart. But the direct anaftomofes, or final openings of the arteries into the veins in the lungs, is proved even to the fight by the microfoope, in frogs, \&c.
§. 103. Nor can the blood, which has once entered the pulmonary artery, return back again upon the heart; becaufe the valves therein (§. 100.) are of fuch dimenfions, that, when diftended, they perfectly fhut up. the opening at the heart, and are fo ftrong, that they refift a much greater force than the contraction of the pulmonary artery, without being conftrained to yield. However, fometimes, from a greater contractile force of the artery, they grow callous, or, from a laceration of their outer membrane, a bony matter is poured in betwixt the duplicature of the valves. For when the blood, by contraction of the artery, returns towards the heart, it meets and enters the open fail-like concavities of the valves, (§. 101.) which are, by that means, expanded and drove together towards an axis in the middle, whence
the valves, once expanded, quite fhut up the mouth of the artery, fo as to leave not the leaft flit open; for any opening, that might be left, is præcluded by the fmall callous bodies, remarked at §. 100.
§. 104. The pulmonary veins, of which we fhall fay more herafter (§. 272.) gather into larger branches, which, at laft, terminate in four (feldom two) trunks; to which, it has been cuftomary to affix a name in the fingular, by calling them the pulmonary vein. Thefe enter the cavity of the pericardium, from whence they receive an external covering, and are then inferted at angles into the fquare, left or pofterior finus, which is fometimes, likewife, called the pulmonary finus. In this courfe, the upper veins defcend, as the lower ones afcend. But that thefe veins bring their blood towards the heart, in the fame direction with the finus, into which they open, is proved by a ligature, which caufes a turgefcence or fwelling, from the blood retained, betwixt the ligature and the lungs.
§. 105. This pulmonary finus, being firmly built of divers bundles of fibres running betwixt two membranes, has forward, and to the right, one fingle fide or partition, in common to itfelf and the right finus (\$.82.) : but forward, and to the left fide, it goes into a conical appendix, which is divided into proceffes, or indentations, like a cock's comb, and, after two or three ferpentine

$$
\mathrm{G}_{3} \text { turnings, }
$$

turnings, makes, what is called, the left auricle, incumbent on the left ventricle. This finus, with the left auricle, are fomewhat lefs than the right finus and auricle.
§.106. In this left finus the blood waits for the heart's relaxation, at which time the nifus of the blood, impelled againft the venal valves, and the contracting ftronger force of the finus, grow leifs. Then the finus, together with its fmall auricle, being contracted, the blood is, by their means, drove into the left ventricle, in like manner, as the night auricle impelled its blood into the right ventricle. (9.90.) For here, as before, a like membranous oval ring forms productions called mitral valves, of which there are ufually two only counted. Thefe valves are longer and ftronger than thofe of the right ventricle. They have each a mufcular column, often fingle only, and joined to the tendinous threads of each valve; but they are much fronger than thofe of the tricufpids (8. 39.). And here callous knots or cartilaginous humours are often found in the tendinous ftrings, at their originations from the membranous ring.
§. 107. From what has been faid then, it appears, that the fame blood is now arrived into the left ventricle of the heart, which was a little before fent from the venæ cavæ into the right auricle, $(\S .35$.) which drove it into the correfponding or right-ventricle, (8.90.) by which again it was urged into
the pulmonary artery, (§.100.) and from thence, paffing into the pulmonary veins, was conveyed into the left finus (§.104.); and out of this, we here find it driven into the left ventricle. (§. 106.) This courfe of the blood, from one fide of the heart to the other, through the lungs, is called the pulmonary or leffer circulation, and was known to many of the ancients, before mentioned in §. 62.
§. I08. The left, or poiterior and upper ventricle of the heart, makes up that part of its half-cone-like body, which we before called obtufe, (§.86.). 'Tis fomewhat narrower than the right ventricle, a little longer, rounder, and generally of a lefs capacity within. For the contents of this ventricle are about two ounces, while thofe of the right advance up to three. - Its fabric internally is reticular, as in the right ventricle; but its force is confiderably greater, as the mufcular flefh that furrounds it, is much thicker and ftronger.
§. 10g. Again, this left ventricle, being inftigated to motion by the impelled blood, does, from the fame irritable nature before mentioned, (§. 87.) contract and drive its contained blood with a violent motion in the direction of its axis, and determine it towards the bafis, at the time when the tip or cone of the heart is drawn nearer to its bafis. And fince the apparatus of the mitral values is here the fame, as before in the triG 4 cufpids,
cufpids, $(88,89$.) the venal blood now expanding the ring from whence they arife, removes that valve which lay againft the mouth of the aorta, fo as to open a way for itfelf to the artery, in dilating the mouth of which, the faid blood preffes the femilunar valves, there placed, againft the fides of the aorta, into which it ruhes with a violent impetus.
§. I10. The femilanar values of the corta differ little from thofe in the pulmonary artery, (§. 100.) only as the opening is here greater, fo the valves are proportionably larger and ftronger, and are not fo often diftinguimed in the middle by thofe callous globules, or little round bodies. (§. IOO.) The fibres too of the valves, both tranfverfe and afcending, are here fomewhat more conficicuous.
§. III. Butwe muft now confider, that thefe motions of the right and left auricle, with the right and left ventricle, are not performed in that fucceffion, in which, for the fake of method, we have here defcribed them; for both the auricles are contracted, while the ventricles are relaxed: fo that the contraction of the auricles precedes the contraction of the ventricles; as we are affured from manifert experiments, on dying animals, and on thofe whofeliving blood is cold. But both auricles are filled together in the firft inftant as both of them are emptied together in the fecond inftant; and both the ventricles are
contracted together in the third inftant, which is the fame with the firft; and both ventricles, being evacuated, are relaxed in the fourth inftant, which is the fame with the fecond. Thofe who have miftakenly taught otherwife, have not taken the advantage of making a fufficient number of experiments on living animals. That the auricle, near death, makes frequent palpitations, before the ventricle of the heart performs one contraction, is true enough.
§. II2. But it may be afked, why the heart never ceafes from its perpetual motion, through fuch a number of years as there are in one's life, through fo many days as there are in a year, and through fo many hours as there are in a day, when, in each hour, the heart of a healthy perfon contracts not much lefs than 5000 times; fo often are there fucceffive repletions followed with new contractions, perpetually in the fame conftant order. [Nor is there any other mufcle, befides the heart and diaphragm, but what becomes tired and painful, by acting inceffantly, even for a few hours.] Different anfwers have been given to this queftion by different profeffors, founded either upon a compreffure of the cardiac nerves betwixt the large arteries, or upon an alternate repletion of the coronary arteries, and cavities of the heart, \&x.
§. II3. But to me the fimplicity of nature feems very great in this matter. When the auricle is relaxed, it is directly filled by

Of the Heart.

the mufcular force of the continuous great rein; and to the beart alfo contracts itfelf, in like manner, it is irritated by the blood driven into it from the auricle*. Therefore, the heart, having once received the blood, is contracted by that fimulus or irritaine force, whereby mufcular fibres are excited into contraction; whereupon it empties itfelf of the blood, and, being freed from the fimulus thereof, immediately refts or relaxes itfelf. But the heart being now relaxed, the auricle is in like manner irritated by its contained blood, and by contracting fills it again ; while the inceffant detions of the heart and arieries continually urge new blood into the right finus and auricle. [The motion afcribed to the vena cava, is, from the right auricle, throwing back fome blood again into the upper and lower cava, becaufe the now dying heatt will not receive it all.] That this is the true fate of the heart's motions, is proved from actual experiment or obfervation, whereby we plainly difcern the fucceffive repletions and conftrictions made in the

* Conformable to our author's fyftem, was that of the ingenious Mr. Cowper, who allotted to the blood the office of a pondus, inftrumental of the confriction, or violent ltate of the heart; from whence (according to him) it fyontaneoufly returned to its natural fate of dilatation: though this is erroneoully oppofed by his friend Dr. Drake. Anat. Vol. II. Edit. 1. P. 403.
great
great vein, auricle, ventricle, and artery, eafily feen in a weak or expiring animal, but more efpecially, and more evidently in thofe animals which have but one ventricle in the heart, as the tortoife, frog, fnake, firhes, and in the chick hatching in the egg, which, inftead of a heart, has only one crooked canal. The fame is alfo confirmed from the refting of the heart, which follows upon tying the veinis, and from the return of its motion, by removing the ligatures, or by the impulfe of wind or liquors injected; and Iaftly, from the perpetual contraction of a frog's heart, round or upon a veficle of air inflating it, which air urged into it by the veficle, it will alternately receive, and for many hours tranfmit, into the common air. Hence it appears, why the auricles, and efpecially the right, are the lant of all moving, if you except the next continuous part of the vena cava; becaufe the heart is irritated into motion, by the blood fent towards it, by a contraction of the extreme parts from the cold invading the body, at which time, the lungs, defititute of the act of refpiration, refift the blood of the right ventricle; but the left ventricle, receiving none, fands fill for want of irritation.
§. 114. Nor do I believe there is any thing more than this required to the heart's motion. For if you derive the heart's refting, from a compreffure of the nerves, the motion of the auricles will be an objection, whofe nerves, in order to that, ought not to be
be compreffed; and for example, in fifh and litttle chicklings in the egg, there can be no room for a compreffure of the nerves. If, again, you deduce the heart's reft from a compreffure, or occlufion of the coronary arteries, this is contrary to experience; fince they are not covered by the valves of the aorta, and from a wound of the faid arteries, during the fyftole of the heart, the blood ftarts out to a great height ; and again, the motion of the heart ftill continued, after they were tied by M. Chirac. But fuch an abfolute impatience is there in the fibres of the heart to bear any ftimulus, that, even when the vifcera are almoft dead, this appears to have a kind of motion within its own fibres; which, beginning in a fort of radiant points, is propagated in wrinkles into the adjacent parts: if, now, you pull out the heart, although it be growing cold, if you puncture, inflate, or irritate its membranes, the fibres of the extracted heart become corrugated in rings, notwithftanding there is not now a continuous nerve or artery to fupply the beating heart. [And this irritability of the heart is more exquifite and durable, than in any other part of the body ; becaufe we fee, it may be thereby recalled into its former motions by a ftimulus, when no other mufcle can be fo excited.]
§. 115. But with what celerity, and with golot force the beart drives forward the blood, is controverted, and varioully computed. The more modern writers have raifed their calcu-
ealculations upon a fuppofition, that for the celerity to be determined, we are to admit two ounces of blood to iffue out of the heart with fuch a celerity, that the part of the pulfe, called its fyftole, makes one third of the whole pulfation, and is finifhed within $a^{\frac{1}{2} \frac{1}{2} 5^{\text {th }}}$ part of a minute; but the area of the mouth of the aorta, they have eftimated 0.4187 parts of an inch; fo, by dividing the fpace filled by two ounces of blood, (3.318 inch) by the area or fection of the aorta at its mouth, [and length of its cylinder filled by two ounces viz. = $\left.7 \frac{293}{3} \frac{3}{3} \frac{0}{8} \frac{9}{80}\right]$ the number thence produced divided by $\frac{1}{2 \frac{1}{2} 5}$, the time in which the heart contracts, they find I49 feet and two tenths of an inch for the fpace, thro which the blood runs in a minute, if it goes on in a cylinder with the fame velocity it firft had from the heart, which it does not. But the incumbent weight of blood moved by the heart, they have computed by the jet, wherein the blood ftarts forth from the larger arteries in a living animal, being feven feet five tenths, and from the furface of the ventricle, whofe area makes 15 inches; which produce 1350 cubical inches of blood, or 51 pounds five ounces, which prefs againft the ventricle of the contracting heart. The heart, therefore, thus drives forward a weight of 5 I pounds, with a velocity, by which it may run through 149 feet in a minute ; which force it exerts four thoufand eight hundred times in an hour.

There is no doubt but the heart moves not only the whole mafs of blood, and other continuous juices, but alfo all the yielding folids, and even every individual yielding fibre is elongated by each fyftole: but then this is owing to the mechanifm of the arterial fyitem, which makes a leaver or fpring of very great purchafe, for multiplying and transferring the force of the heart, which the arteries receive and apply, fo as to produce great and extenfive effects. But then we muft not afcribe to the heart alone effects, which it can produce only by the affiftance of the arteries. And if all circumftances be duly confidered, the heart's force will be found fo far fhort of Borelli's enormous calculation, that it will be lefs than any computation I have yet feen. See remark to \$. 117 .——As to the time in which the mafs of blood may make a compleat circulation through the heart, as it flows, with an irregularly decreafing and increafing motion, that varies in every artery, and in every vein, proportionably to their feveral lengths, diameters, angles, infiexions, ftrength, $\& \%$. no one can juftly determine it. The return of it may be twenty times quicker through the coronary veffels of the heart, with thofe of the intercoftal mufcles and diaphragm, than in many other parts: and it may move an hundred times flower through the leaft veffels of the liver, than in the largeft veins at the heart. However, on Dr. Hales's principles, the larger arteries may fhift their contents into the veins, and the larger veins may pafs their blood thro' the heart, once in about five or fix minutes, in which time, the majority of the current paffes the heart in one compleat round.

> §. in 6. Al-
§. ri6. Although there are many particulass here (§. its.) unthought of, which may render the eftimate incompleat, and fuch, perhaps, as we may never get over; and, although, the area of the ventricle be of fo uncertain dimenfions, and the jet of blood computed from an infufficient height, yet, if we confider the violence, with which the blood farts from fome of the leaft fanguine arteries in the living animal, although we cannot eafliy determine how much of the heart's fyttole it affumes to itfelf, variations, in which, will greatly alter the computation; yet, in the mean time, it will plainly appear. that the muicles we call the heart, make a very powerful machine.* The truth of this is evident from experiments, in which it appears to be very difficult to fill all the red blood-veffels by anatomical injections, and quite impoffible to fill all the fmaller of them: yet the heart, we fee, not only gradually diftends all the larger, the fmaller, and even the leaft veffels with blood, but allo árives it forward through them, with a confiderable celerity. Even, from fome of the leaft arteries, I have feen the blood fart forth feveral feet, the jet defcribing a parabola, whofe height wasfour feet, and amplitude of the projection feren feet. [And fome affert, they have feen the blood afcend from the aorta to the height of 12 feet.]

* That is to fay, when aided by, or aeting in conjunction with the arteries.

$$
R E-
$$

Of the Heart.

R E M ARK.
Obferve here, that the heart fills the fmaller veffels, not by one, but by repeated ftrokes; or by a force multiplied in, and communicated from the coats of the great arteries, which force, as well as that of the heart, enters the meafure or parabola of the jet of blood from an artery. See the following remark.
§. i17. Moreover, that we may make a juft eftimate of the heart's force in living animals, we muft confider what great refifances that complex mufcle overcomes; we muft compute the enormous weight there is of the whole blood, a mafs, perhaps, of fifty pounds and upwards: for all that quantity of fluids, once ftagnant in a perfon lately drowned, or fainted away, are eafily put into their former motion by the heart only. We muft again confider the great decreafe of the blood's velocity, arifing from the greater light or capacity of the dividing branches, (from whence the ratio of its celerity, even in the inteftines, may be computed to only a $24^{\text {th }}$ or a 30 th part of its original impulfe) abates two thirds from the heart's force. And yet we fee there are humours fwiftly moved through much fmaller veffels; as for example, in thofe of the Sanctorian perfpiration, which, in a fubterraneous cavern, I have obferved to afcend fififtly in form of fmoak or vapour; and the fame celerity of the blood in the leaft veffe's of little fifhes, \&c, is apparent to the eye
by a microfcope. Now fince the frictions, in every machine, always confume a great part of the moving forces, much more do they in the human body, whofe blood and juices are fo much more vifcid or clammy than water, and drove through veffels fo fmall, that they permit only a globule at a time to pafs through, and even hardly allow that, without changing their figure; but from fo ftrong and extended a friction, muft neceffarily follow a very great hindrance to the motion, whence we may eafily underftand, that the force murt be very great, which drives fo fwiftly fuch a prodigious mafs of fluids, over fo many refiftances and decrements of the moving forces,

R E M A R K.

We are to obferve here, that a very fmall part only of thefe refiftances* is removed each time by any fingle contraction of the heart; to which the arteries ferve as a multiplying fpring, by their elaftic force, proportionable to their diftention; and drive forward the blood and its continuous juices, in the fame manner, as the air, by its fpring, throws out a continued ftream with a celerity proportionable to its compreffure, in the fire-engine or forcing-pump. For, as the arterial valves at the heart, which futtain a part of this elaftic force equal to their furface, will admit of various apertures; the heart acts upon that hydraulic principle, whereby any force or preffure, ever foweak, by urging a fiuid through an aperture, proportionably fmall, fhall overcome any reffence, or raife any weigbt, ever fo great. So that whenever the arterial refiftance is in-

> * Equal to the opening of the valves.
creafed, or the mufcular force of the heart abated, the valves of the heart are opened by a proportionably fmaller column of blood; which, in a natural eafy fyftole, is feldom more than half the contents of either ventricle; as in a natural eafy expiration, the lungs feldom expel more than half their contained air. Hence it appears, that to allow an opening to the valves, equal to the light of the artery, and the quantity of blood expelled, to be equal to the capacity of the ventricle, $\$.115$. are conceffions too great by half to eftimate the natural force of the heart, which when reduced to but a few ounces, is yet, upon the abovefaid hydraulic principle, able enough to carry on the circulation. To this automatic or elaftic force, as the principal, add the vital or mufcular force of the artery. Vide remark to §. 44.
§. 118. The blood being drove into the aorta, immediately finds the two openings of the coronary arteries, which lie next the arterial valves, but above them, or within the aorta; and, in confequence of this, it rufhes firft of all into the faid coronary arteries, by which the heart fupplies iffelf with blood. Thefe arteries are almoft conftantly two, which going off from the aorta next the heart, at an obtufe angle, are diftributed in a retrograde or contrary direction. More particularly the rigkt coronary artery defcends betwixt the aorta and pulmonary artery, and bending round the furface of the right auricle, it winds about the fharp or anterior edge of the heart, whence fipreading on the lower or flat fide thereof, at its middle or a
little further, the branches go on, and terminate towards the tip of the heart; after having firft given its fmall branches to the right auricle and ventricle with the lower vena cava, pulmonary vein, \&cc. The other fuperior and left coronary artery goes out betwixt the left auricle and the aorta by three branches; one of which goes round the root of the left finus to the lower plane of the heart, but terminates on this fide the middle feptum of the heart, and is fpent on the left ventricle, and on the left auricle with its finus. In like manner, another branch is fpent by defcending branches on the top of the obtufe edge or upper fide of the heart belonging to the faid ventricle, where it makes circles detached to the large arteries. The third branch is fpent deep within the mufcular flefh of the heart. All the external arteries of the heart are followed or furrounded with much fat.
§. ilg. Thefe arteries communicate, by open anaftomofes, or inofculations of the fmall branches, every where about the feptum and tip of the heart; but they no where make a compleat ring round the heart. They terminate in a two-fold manner.
§. I20. The firft termination of them, is into the coronary veins, whofe branches running in company with thofe of the arteries, have their trunks of neceffety difpofed in a different courie. The great coronary vein is, therefore, a companion of the left coronary
artery; and is inferted with a large opening, fecured with valves on the left fide of the Euftachian valve (§. 84.) of the right auricle, the root of this furrounds the left auricle externally, and then accompanies the fuperficial branches of the left artery, as before defcribed, §. in 8.
§. I2I. The other coronary vein (which you may make a part of the former, fince they have both one common infertion) defcends along upon the feptum of the heart to its flat fide; and may be properly called the median coronary. The third bends tranfverfely round the furface of the right auricle, and then terminates within, or, at leaft, very near, the large opening of the coronary vein (§. 120.) anteriorly. This vein fupplies that part of the right ventricle, which lies in the flat fide of the heart; and often receives thofe namelefs veins, we fhall hereafter defcribe.
§. I22. There are fill fome other anterior veins of the heart; but one, more particularly large, goes along the adjacent edge of the right ventricle, and running for fome length obliquely betwixt the membranes, is inferted into the moft anterior part of the right auricle, and fometimes into the trunk of the upper vena cava. This anterior vein fends off another concealed one through the root of the right finus, and being again inferted into the great coronary vein, it makes 2. compleat circle round the heart, like the
arterial circle, (§.II9.) which fome have defcribed, but has not yet been feen by me. As for leffer venal circles about the heart, as well as the faid arterial one, they are not yet fufficiently confirmed.
§. 123. But there are a great many more veins, uncertain in their number, which belong to the bafis and internal parts of the heart, to which the anatomift has feldom any accefs, becaufe they lie concealed betwixt the origins of the large veffels: and thefe open by numberlefs fmall mouths into the right finus and auricle; and fome, but a few only, into the left finus. Thus I have feen a particular vein, which, from a latent finus in the fiefh of the right auricle, has afcended up towards the aorta and pulmonary artery, and inferted itfelf on one fide into the greater coronary vein. Another I have obferved, concealed betwixt the mouth of the coronary vein and the aorta, inferted into the right finus; and another through the remains of the oval foramen, and feptum of the two finuffes, inferting itfelf into the right finus; and others again belonging to the venal valves, befides which, there are ftill others too numerous to defcribe.
§. 124. There are Atill more, and much fmaller, veins in the heart, whofe little trunks, being very fhort, cannot eafily be traced by diffections; and thefe open themfelves by an infinite number of oblique fmall mouths, through all the numerous foveæ or
little finuofities and excavations, obfervable throughout the furface of the right and leff ventricle. Thefe are demonftrated by injections of water, wind, or mercury, made by the coronary arteries, after you have firft tied their correfponding or accompanying coronary veins; or even by injecting into the great coronary veins, after you have firft intercepted the openings of their largeft trunks. For, in either of thefe cafes, there are drops of the tinctured water, bubbles of air, fpherules of mercury, rufhing out thro' the whole extended furfaces of both the ventricles of the heart. [And this, without any violence that can be fuppofed fufficient to break the veffiels.]
§. I25. There are fome who will have the coronary arteries filled with blood, not by the contracting of the heart, but of the aorta in its fyftole; which they think muft be a confequence of the retrograde angle of the blood's courfe here, and the palenefs of the contracted heart, with a fuppofition, that the valves of the aorta cover or clofe the mouths of the coronary arteries. But the two laft of thefe are difproved by experience, and the firf, or retrograde courfe, can only impede or leffien, and not intercept, the flux into the heart : for the injections of wind or mercury, into all the feminal and biliary veffels, demonftate, that the large retrograde angles, which the veffels often there make, do not hinder the fluids from taking their
their natural courfe, though they retard it. But a proof, ftill more evident, is, that the coronary artery, and the blood ffarting from it, make a higher faltus at the time when the heart is contracting.
§. 126. Concerning the reflux or return of blood from the mufcular fubftance of the heart, there is ftill lefs room to doubt: for all the coronary veffels difcharge their blood into the auricles and ventricles, either right or left, (but lefs into the latter) by thofe larger ($\$.120$ to 123.) and by the fmaller orifices, (§. 123.) as well as by the leaft, (§. 124.) which fo eafily tranfmit the injections, after you have firft tied the larger coronary veins. The circulation through thefe veffels feems to be compleated in the fhorteft face of time that can be in any part, from the great velocity the blood receives from the heart itfelf, urging the fame through its own fubftance. But that the whole contents of the veffels are cleared in each contraction, does not feem to me probable; for the blood-veffels of the heart do not look pale enough in that action to produce fuch an effect, as an entire evacuation. ----There is a very free or open paffage from the arteries of the heart into the cellular fubfance, or fat which furrounds it.---If you aik, what are the ufes of thofe leaft or thorteft veins, which open obliquely thro' the furfaces of both the ventricles? (\$. 125) ${ }^{H} 4$
they
they ferve to return the blood of thofe deeply feated fmall arteries, within the mufcular fubftance, which have no correfponding veins running by their fides, like thofe on the furface.
§. 12%. The humours of the heart, which are thinner than blood, return by the valvular lympbatic veins, which accompany the coronary blood-veffels, and afcend towards the thoracic duct and fubclavian vein, but are very rarely to be feen.

REMARK.

From what has been faid, it appears, that the force of the heart is manifeftly greateft in thofe who have ftrong fibres, not too eafily irritable, with a pulfe large and moderately flow. For the number of pulfes being given, the ftrength of the body, in health and difeafe, will be as its magnitude, if the arteries are duely pervious; and if the magnitude be given, the patient's Itrength will be as the flownefs of the pulfations, if there be no obftructing caufe at the heart. So the ftrength will be in a ratio, compounded of the magnitude and flownefs of the pulfe. Thus the perfon's ftrength, and the arterial refiftance, with the tenacity of the humours, being the fame, the quantity of the heart's contraction will be as its irritation, from the plenitude and tenfion of its ventricles. The arterial refiftance and heart's plenitude being the fame, its contraction will be as the nervous or mufcular ftrength of the body. Or the heart's ftrength and plenitude being given, its fyftole will be as the refiftances inverfely.-If the heart weak-
ened throws out lefs than it receives, the pulfe quickens to compenfate the want of magnitude: and fo the heart may labour with oppreffion, either (I.) from the venal preffure increafed. (2.) From the arterial refiftance augmented. Or (3.) from a nervous weaknefs of the mufcular ftrength or vital powers. And thefe make the immediate caufes of fevers, which refult again from changes made by the nonnaturals, either in the automatic and mufcular powers of the heart and arteries, in the encephalon and nervous fyftem, or in the quantity and quality of the blood, and principal humours thence fecreted.

LEC.

LECTUREVI.

Of the common offices of the arteries.

§. 128.7 HE blood is thus drove from the left ventricle of the heart into the aorta, which takes its courfe firt a little towards the right, and then to the left in an arch, that is very fharply bent; and here the mafs of this purple fuid ftrikes firft againft the right fide, and is then refleceed to the left fide again of the aorta, whence flowing in a vortical or whirling motion, as much as that full veffel will permit, it goes on through the arteries, with an alternate collifion againf, and repercuffion from their fides. §. 129. Thefe beating veffels are, in a living perfon, altways full of blood; fince the jet or ftream, that farts from an artery, is not interrupted by alternate frops, while the heart refts or relaxes itfelf, but it flows on, in a continued thread; add to this, that the microfcope fhews the arteries, in living animals, to be full, both in their fyffole and diaftole ; nor can the circular fibres of the arteries fo far contract themfelves, as to entirely evacuate thefe tubes. Since, therefore, a new wave or column of blood is fent into the arteries already full, although it bear a fmall proportion to the whole mafs contained in the arterial fyftem, through-
out the body, hardly ever exceeding two ounces; yet, by its immediate contact with the precedent wave or column, which moves flower, as it gets farther from the heart, it confequently drives the fame forwards, and diftends or dilates the arteries, urging the convex parts of their flexures outwards, and caufing their firal waves to be more ferpentine, as injections demonftrate to us. This dilatation of the artery, whereby its light or capacity is changed from a lefs to a greater circle, is called the prife; the diafole or dilatation of which, is an expanfion of the artery, beyond its natural diameter. This being the proper or characteriftic action of life, refults from the heart only, and is in no wife natural to the arteries left to themfelves. Hence, when the motion of the heart is intercepted, whether by aneurifm, ligature, or otherwife, there is no pulfation of the arteries to be felt; and from hence too, there is a fudden ceffation of the pulfe, by a wound through the heart, in a living animal.
§. I30. The fytole, or contraction of the artery, immediately follows the faid dilatation of it. Namely, the heart, having emptied itfelf, and removed the fimulus of the blood, directly comes into a fate of relaxation or reft. But the artery, at this fame time, by its innate elafticity, and contractile power refiding in its circular fibres, ($8 \cdot 30$.) irritated likewife by the Atimulus of
the impelled blood, enters into a ftate of conftriction, by which as much blood is driven out from its capacity, as ferved to dilate it beyond its mean or middle diameter: which quantity of blood is either forced into the fmaller and fcarce beating arteriolæ, or elfe returned into the veins; becaufe the reaction, from the refifting femilunar valves of the aorta, will determine the blood that way from the heart, §. 104. So foon as the artery has freed itfelf from this wave or column of blood, being no longer ftimulated by diftention, it directly collapfes by its own proper contractile force, and is now again ready to yield to a new wave or column of blood, fent into it from the heart; whence follows a repeated diaftole, or dilatation of it, as before.
§. 13I. That the arteries thus contract, and, by that force, drive forward their contained blood, is proved evidently from their Itrongly contractile nature ; from the apparent diminution of the diameter or dilatation they receive from the heart; from the evacuation that follows, by the proper force of the artery itfelf, driving out ail the blood that is contained in the lateral branches, betwixt two ligatures; from the greatnefs of the jet of blood, that farts from an artery, even while the heart is relaxed, and at reft; from the ftrength or force with which eminent anatomifts have obferved the blood thrown out of the tied aorta, below the
ligature; from the evacuation, which the arteries make of their contained blood, even after death, into the veins, whereby thefe latter appear much fuller than the arteries; and laftly, from the confiderable jet or faltus of blood, that iflues from a large artery in an animal, even after death, amounting to the height of two feet; to which add, the convulfive contractions of the animal, in which the artery is thus wounded, and the remarkable clofings of the mouths of divided arteries in wounds, [and a fphacelation of the limbs, from an offification of the artery; whence the veins become diftended.]
§. 132. The great fwiftnefs of the blood's motion, (§. II5) being fuch as carries it above two feet, in the fpace of a fecond of time, and the conftant plenitude of the arteries, render it impoffible for us to perceive any fucceffion in the pulfes of different arteries; whence all the arteries of the body feem to beat at one and the fame inftant, whilft the heart frikes againf the breaft; and yet there is certainly a fucceffion in the fyftole of the arteries, by which the aorta feems to contract in the fame order fucceffively, as it is filled by the blood, expelled from the heart; fo that the part of the artery, next the heart, is firft conftringed, and thence gradually the arterial contracting force proceeds to the extremities. An inftance of this we have in the inteflizes, and the fame is evident to the eye in infects, who have a
long fiftulous and knotted heait, manifefly contracting in a fucceffion from the beginning to the end But the mind cannot difinguim the leaft points of time, which are the meafures of this fucceffion.
§. 133 . If it be afked, where this pulfation ends? we anfwer in the leaft arteries, and cylindrical orginations of the veins. Certain we are, that the lights or fections of the arteries, compofed by the aggregation or fum of their tranfverfe fections, as they divide farther, in their courfe, from the heart, greatly exceeds that of the aorta; fo that fince the ratio, or lefs proportion of the trunks to their branches, continually diminifhes, as they make lefs ramifications, and this, in a variable or uncertain proportion; the difference of that ratio or proportion will be the greateft, betwixt the light of the aorta at the heart, and the fum of the fections of all the fmall arteries, where they are leaft, in the extreme parts of the body. Again, (2.) the proportion of the arterial membranes, or coats in thicknefs, with refpect to their bores or capacities, is greater, as the arteries grow lefs; and is largeft in the leaft of them, which tranfmit only one globule at a time. The truth of this, is proved from anatomy, and the forcing of air into the arteries, by which they burft always more difficultly, as they are lefs; and from the calculation itfelf, by which the magnitude of the leaft arteries is determined from
from the globules diftending their two femicylindric membranes. Add to this, (3.) the friction of the juices through the leaft veffels, inflected and meeting together in angles; which friction, even in the moft fluid water, running through long pipes that are fingle, and in a direct courfe, greatly diminifhes the velocity, and more in proportion, as the tube is of a lefs bore; while again, as the artery is lefs, there are a greater number of globules rubbing and grating againf its membranous converging fides. But, moreover, (4.) the inflexions and folds, or plates of the veffels, greatly flacken the blood's motion ; fince always fome part of the impelling force is fpent and loft in removing the convex parts of the folds, and changing the figure of the inflected vefiel. Laftly, (5.) the great vifcidity or tenacity of the blood itfelf muft be confiderably allowed for, fince, by reft only, it directly hardens into clots; and fince it is from the circulatory motion only of the blood, that this mutual attraction of cohefion, in its parts, is overcome, fo as to hinder if from adhering together, or to the fides of the arteries; for fo we find it adhere in aneurifms and wounds of the arteries, or elfe the globules clot together, as we fee ufually after death. From all which confiderations, you will obferve, that the blood meets with the greateft retardation in its courfe, in the leaft veffels. [And furgeons know, that a fmall branch, roufly than one much larger, that is more remote.] We may eafily perceive the amounts of this retardation will be very confiderable, although it be difficult to make a juft eftimate of it. In the larger trunks, the blood of a living animal flows with the rapidity of a torrent; but, in the leaft branches, it creeps along very flowly, with its globules trailing only one at a time, and apart from each other; fo that in the leaft, it begins to put on a ftate of coagulation. Thus in a frog, the blood runs through the capillaries but two thirds of an inch in a minute; and in an eel, it moves through four inches in that time. Compare this with what is faid at §. $5^{8}, 115$ and 140.
§. I34. The pulfe, therefore, or dilatation of the artery enfues, becaufe the anterior wave or column of blood moves on flower, while the fubfequent or pofterior wave comes fafter ; fo that the precedent is an obfacle to the confequent blood, §. 129. But fince the force of the heart weakens as the blood goes on, and the contractile power of the arteries increafes, therefore the difproportion of celerity, betwixt the antecedent and confequent waves or columns of blood coming from the heart, will be continually leffening, with refpect to the blood that is urged on by the contraction of the fmaller veffels, 'till arriving at a part where there is no excefs or difference, it will there
ceafe to make any pulfation of the artery; becaule here the anterior and confequent blood flow evenly, or with the fame celerity in one continued thread. But this place of equality, in motion, cannot be in the larger and more confpicuous arterial branches; for in them, the wave, laft coming from the heart, moves quicker than what went before; as is evident from the inflammatory pulfation of them, efpecially in the fmall arteries of the eye. But in the leaft red arteries, the pulfe at length begins to vanifh. This is evident from the equable motion of the blood, often feen by a mictofcope through the arteries of a frog. But in the leaft veins, vifible to the eye, there is no fenfible pulfation or accelerated motion of the blood, whilf the heart contracts, demonftrable, either by the microfcope or any other experiment.

REMARE.

With regard to the pulfe of the arteries, it appears to us to depend more on the action of the arterial coats than is commonly imagined. For example, if the parts of a vifcid fluid run into cohefion, fo as wholly, or in part, to fhut up the light of a converging tube, this will be fo far from accelerating the flux through the dead tube, that it will either proportionably abate, or wholly intercept it; whence the doctrine of inflammation, as arifing from a mere obitruction, has been exploded by Dr. Gorter and others (who, by ftanding on good precettor Boerhazve's fhoulders, have, in feveral
particulars, been able to fee further than himfelf.) But an obftructing matter in a living artery, which is an irritable mufcle of confiderable force, will there act as a ftimulus, whereby a greater flux being derived into the nervous and vafcular fabric. of the arterial coats, that obftructed artery will contract more violently, or to a lefs diameter than the reft, as will, likewife, all the branches coming from the artery below the part ftimulated: but this feries of the arteries being thus more empty than others at each fyftole, as foon as their contraction is over, they will proportionably make a lefs refiftance than other arteries, to the blood that comes to fill them; which, thus flowing in a greater quantity, will alfo caufe a larger diaftole, which, joined with a larger fyftole, is the effence of fever and inflammation. We are, therefore, not to imagine, the blood is equally accelerated through all the arteries in fevers; for wherever there is pain or local inflammation, the acceleration will be greateft through the arteries of that part; although, from communication and confent, it will be alfo accelerated in a lefs degree through the whole fyitem. Dr. F. Hoffman makes this local and univerfal increafe of action in the arteries, the proximate caufe, not only of fevers and inflammations, but of moft other diforders, under the denomination of fpafms or convulfive conftrictions; and contents himfelf in accounting often for the production of a difeafe, by refolving it into this fource: whence his theory is lefs ufeful and inftructive than the Boerhaavian, which takes particular notice of, and claffes more accurately, the many proximate caufes in the habit, and numerous remote ones without, producing this fpafm as an effect; the cure or removal of it being various, as the caufes fhall direct. See remark to §. 44 :
\$. 135. It follows, therefore, that the force of the heart altogether ceafes in the beginning of the veins, fince there is very little of it remains in the leaft arteries, and in the leaft of the confpicuous veins, nothing at all of it can be found. And that the pulfe may be thus fpent or loft, merely through the narrownefs of the leaft veffels, is proved by the experiment, in which a pipe, fixed in a leathern tube, and driving forth water in a continual, but ftarting fream, does, by a fponge, fixed round the mouth of the faid tube, caufe the water to iffue forth in an even ftream, without leaping, through the fponge : and the fame is evident from another experiment, in which the fame thing happens, by injecting the mefenteric arteries with an alternate impulfion of water; for then the water flows out through the veins, in one continued even fream.
§. 136. The pulfe is, therefore, the meafure of the powers, which the heart fpends on the blood; becaufe it is the immediate and full effect of thofe powers. Hence all things confidered as alike, the pulfe is flow in the moft healthy people, where there is no fimulus, nor any unnatural refiftance to caufe the effect of a ftimulus, but the heart is at liberty to fend forwards the blood with eafe. A large pulfe is caufed by fulneis of the artery, joined with a ftrong force of the heart. But a bard pulfe denotes fome obfacle or ftimulus; or elfe, that the heart's force is increafed with a greater thicknefs of blood, or a greater rigidity of the artery. A quick pulfe denotes fome fimulus,
obftacle, or greater fenfibility or irritability of the heart. 'Tis beft felt where the artery lies expofed bare to the touch, upon fome refifting bone; but obftructions fometimes render the pulfe perceptible, where it is never fo naturally.
§. 137°. The pulfe is flower in animals, as they are larger or more bulky, [becaufe the heart is proportionably bigger in the fmaller than in the larger animals] and becaufe the heart is obliged to drive the blood to a greater diftance; whence the refiftances or frictions feem to be increafed, in the more bulky, over the force of the heart. Hence, fmall animals are more voracious, and large ones, as the whale and elephant, eat lefs. The pulfe of a healthy perfon, rifing in the morning, beats 65 in a minute; but, after the fatigue of the day, it will in the evening beat 80 in that time; and again, by the night's reft or fleep, it will become gradually lefs frequent, 'till, in the morning, you will find it returned again to its primitive number of 65 . For the voluntary motions of the mufcles, and actions of the external and internal fenfes, urge the venal blood on to the heart, which, being thereby oftner ftimulated, makes more frequent contractions. This is the caufe of thofe paroxyfms or fits of increafe, obfervable in all fevers towards the evening. For fleep not only retards the motion of the blood, but of all the other humours and aftions in the body whatever.

REMARI.

This is one of the curious oblervations of Dr. Hales, viz. that the pulfe is quicker in fmail animals, and nower in larger. In his Hemaftatics, he found the pulfe of a horfe flower by half than in a man, viz. 3 2 only in a minute; whereas in a dog, the pulfe beat 97 in that time; and in a fheep 65 , i. e. about the fame as in a man fleeping. And this we fee is conformable to the blood's heat, meafured by the mercurial thermometer of Farenheit's fcale, as the late Dr. G. Martine has ingeniomsy oblerved. For the blood in oxen, horfes, and other large animals at reft, being five or fix degrees cooler than in us, will not rife to our heat, i. e. gr. 96 , but by a tolerable degree of exercife or labour, which they can thus better endure: whereas dogs, cats, and fowls are five or fix gr. hotter than we (viz. about gr. 102.) and the latter, when fitting or brooding on their eggs for young, are ftill four or five gr. hotter, viz. 107 or 108 , which is commonly the heat of our blood in the fit of an ague; where it is obfervable, that during the greateft fenfe of cold-chill, the blood is three or four gr . hotter than in health, after which it gains four or five gr. more in the height of the hot fit, viz. gr. 104 or 5 ; but in violent ardent fevers, where the pulfe beats 140 , the blood's heat will ftill be four or five gr. higher, viz. gr. 110; i. e. two or three gr. more than equal to a brooding hen or pidgeon, and within three gr. of the heat that fcalds a delicate or tender hand. But fuch an heat is in no danger of hardening, but of putridly diffolving the blood or ferum, which our good preceptor Boerhaave miftook in his chemiftry; for to indurate ferum or the whites of eggs, takes near 50 gr . more of heat. Nor is the pleuritic or inflammatory cruft caufed by a greater 13 heat,
heat, but from a greater ftagnation of the blood in fome veffels, while it runs fafter through others; by which the lymphatic and ferous globules, with the nutritious glue, §. 15. retaining lefs motion from their lefs denfity, run into filamentary concatenations and cohefions.
§. I38. The pulfe is more quick or frequent in children, as they are younger, and becomes afterwards flower in perfons as they grow older. The falient point of an ovum beats 134 in a minute: new-born infants have their pulfe 120 in that time, and from thence down to old age it grows flower, to 60 in a minute. A feverifh pulfe begins from 96 per minute, and we count the pulfe has but a moderate celerity in fevers, or laborious exercifes of adult perfons, if it does not exceed above ilo or 120 in a minute; but 'tis exceffive at 130 or 140 , which is the number of the pulfe, with which a perfon dies. The pulle beats flower in winter, and quicker in fummer, by about io ftrokes per minute; and under the torrid zone, it grows quicker to J20. The different paffions of the mind varioufly accelerate, retard, and difturb the pulfe.

REMARK.

Here we may obferve, that the blood's heat or its velocity are neither of them, in all cales, proportionable to the quicknefs of the pulfe ; but more denfity or proportion of craffamentum in the blood, with more magnitude of the pulfe, or diftention and elaftic force of the arteries muft concur ; the defeat of which is a balance to the great celerity of the pulfe in infants, which would otherwife be the
caule of a high fever in them, as well as in adults. But as they make all their own red blood, even in the womb, and receive none from the mother; the largeft globules which generate the heat, and the elaftic force of their veffels, are at firft inconfiderable, and as thefe advance by age, the celerity of the pulfe abates; whence the heat and velocity of the blood are continued nearly the fame.
§. 139. Through the leaft veins the blood moves on very flowly, partly by force of the heart, which, in fome meafure, ftill remains in it; and partly, by the contractile force of the arteries. The firft is proved by a renewal of the motion of the blood, in perfons drowned; where, merely by exciting the action of the heart, the whole mafs is driven forwards. But the contractile force of the artery is proved by the fphacelation of the limbs, whofe arteries are become offified; [by the continuation of life from this force, after the heart has been offified or confumed; and again, from the blood continuing to move by this force in the tail of a frog or fifh, after it has been cut off fometime]; from the turgefcence of the veins in general, and particularly in the liver, by this force; and from the progreffion of the blood, in a tied artery below the ligature, into and through the veins of any limb to the heart, by whofe force it cannot, therefore, in that cafe, be drove on. But the different fmall times of thefe arterial contractions cannot be diftinguifhed by the eye, they are fo very minute, though reafon affures us of their difference; and as to any perceptible difference in the larger veins,
that is confounded by the actions of the adjacent mufcles and incumbent arteries, §. 141. [But after death, the blood continues to move, in part, alfo by its own gravity, and by the elafticity of the air generated, or extricated by putrefaction]
§. I40. But the blood moves on fafter in the larger veins. For whenever the impelling powers remain fufficient or the fame, and the conveying fmall veffels are rendered narrower, the motion of their contained fluids muft of courfe be accelerated; fince the fection of the venal trunk is much lefs than that of all its branches, in the fame manner as that of an artery is lefs than the fum of the branches into which it divides. Therefore, if the motion of the venal blood lofes nothing in its way, the proportion of its celerity in the vena cava, to its celerity in the veins of the thirtieth divifion, will be thirty times greater in the former, in proportion, as the conjunct lights of all the fmall veins exceed the light of the cava. In like manner too, the friction or attrition of the blood in the veins, and its contact with their ides, diminifh.
§. 141. But fince the blood moves thus flowly in the leaf arterial veffels and incipient veins, and as the weight of the blood iffelf, in many places, wonderfully hinders its return to the heart, while, at the fame time, the very thin coats of the veins have but little contractile power to be expected from them; therefore, nature has ufed various precautions, left, from the Rowne's of its motion, it fhould any where
tagnate
fagnate or concreet. To obviate this, the bas not only furnifhed them with valves, but alfo fupplied the veins with more watry vapours and fluxile lymph, than the probably fent by the arteries, if we confider the great exhalation that is made from the arterial blood in the lungs.
§. I42. She has, therefore, likewife placed the veins near the mufcles, that, by the turgefcence or contractions of the latter, the veins may be preffed; and fince, by reafon of the valves, (§. 52 to 57.) any preffure upon the veins mult be determined towards the heart, (§. 55.) therefore all this force will be entirely employed in accelerating the return of the blood to the heart. From hence proceeds that wonderful quicknefs of the pulfe, (\$. 137.) heat, and rednefs of the body, with a hort and laborious breathing, that attends the mufcular motions or violent exercifes of body.

> REMARK.

The contractions of the aorta appear to urge forwards the blood from the heart, by fucceffively acting towards the extremities; whence the elafticity of the arteries proves a great help to the morion of the blood, and for keeping it in an even ftream, like the jet of a fire-engine. In a ftate of reft, the veins ufually contain above twice as much blood as the arteries; and as they eafily dilate upon violent exercife, by which the larger arteries become almoft empty, but the fmaller very full : they will, upon occafion, enlarge their capacity with refpect to that of the arteries, as two and an half to one, which proportion they fhow by injections; but then you muft confider this, as a flate
of the utmoft violence and fulnels. However, upon occafion, the veins will, without much difficulty, dilate, as a refervoir to the right fide of the heart, fufficiently to hold four or five pounds of blood above their ufual quantity, that in reft ferves to fill the larger arterial trunks. For unlefs there was a provifion for this redundant quantity, which, by violent exercife, is brought from a flow motion in the cells and leaft veffels, into a quick rapid circulation in the trunks and large branches, the animal ufed to much reft would, by violent exercife, be fuffocated by a rupture or other extravafation in the lungs, brain, eyes, liver, \&c. where the veffels refift leaft, or are of the tendereft fabric. This being confidered, as there is fo ample and wife a provifion for preventing the fatal effects of fudden fullnefs, by the eafy dilatability of the veins, I am perfuaded, many of our modern apoplexies come from one or both the carotid or vertebral arteries, being cramped with a convulfive force, as in other mufcles, by which they urge forwards their contents, from the part where the cramp begins, with fuch violence, as fuffices to caufe a rupture or extravafation from the extremities of that trunk: and this is the reafon, why bleeaing is often of fo little ufe to remove the caufe, which would fooner remove by a more painful ftimulus, (as fome burning cinders put directly to the hands or feet, 'till blifters, purges, clyfters, \&c. can be got). In a word, as nervows diforders have increafed upon us of late years to an aftonifhing degree, fo moft of our apoplexies, of late, are of the nervous kind. A fimilar arterial cramp in the lungs caufes an hæmopthoe and afthma; in the liver, a jaundice; in the gula and alimentary tube, the hip and hyfterical fits, \&c.
§.I43. More-
§. I43. Morever, thofe mufcles, which conftantly purge or prefs violently the contiguous vifcera on all fides, that are contained in any of the common venters or cavities, do all of them powerfully promote the return of the venal blood to the heart. Such an effect has the conjunct preffure of the diaphragm with the abdominal mufcles, in refpect to the abdomen. Laftly, the pulfations of the arteries, which run every where contiguous and parallel by the fides of the veins, have no inconfiderable effect in promoting the return of the venal blood; fince, as we have before fhewn, any impulfe, acting on the veins, can determine their blood to the heart only. V. §. 53 to 57°
§. 144. By thefe means, a fort of equilibrium obtains betwixt the arterial and venal fyftem, and betwixt the trunks and their branches, whereby the blood in a healthy perfon, ufing fufficient exercife of body, moves on with fuch a velocity, as fuffices to deliver as much of the purple fluid in every pulfe by the vena cava to the heart, as is equal to what is fent out by that great artery the aorta. But reft or inactivity of body, and a weaknefs of the contracting fibres of the heart and other mufcles (among which, the arteries themfelves (§. 44.) are included) frequently render this motion of the venal blood more difficult. Hence follow varices and the piles in women with child; which latter is much occafioned from the deficiency of valves, in the veins of the porta. And from hence fpring, even the fymptoms of fullnefs, and the menfes themfelves. And
when the veins too flowly return their blood to the heart, the fubtle vapours from the leaft veffels irrigating the parts, being thus refifted, or fcarce able to return to the heart, are obliged to ftagnate; whence proceeds that frequency of cedematous and pitting fwellings of weak people.

R.EMARK.

The contents of this fection are of the laft importance, as a general key to the more proximate caufes, and the moft rational treatments of difeafes in general. We fee hence, that the way to health is in moderation betwixt too much or too little motion or circulation of the blood, and its juices, through the veffels; to attain which, a perfon muft dedicate, at leaft, one third of his life to fleep, another to brifk exercife, and the remainder to reft and refection : excefs or neglect in either of which, in conjunction with other caufes, will, by fubftracting too much from the blood's motion, haften one's end, by chronical and nervous difeafes; or, by too much acceleration of its motion, will have the fame effect, by acute inflammatory difeafes, and their confequences. An idle perfon, that lives plentifully, fhall breed too much juices, which will lodge where there is the leaft motion and refiftance, i. e. in the cellular fubftance and fmaller veffels; if now, by a little more heat and exercife than ufual, thefe are driven into the larger trunks, which have a small ratio to their branches, a fuffocated plethora (ad vafa) is changed into one excited (ad vires); the confequences of which are pains, hæmorrhages, fevers, and fymptoms without number; becaufe a plethora foon caufes a cachochymia, \&c.
§. 145. The effects which follow from the motion of the heart and arteries upon the blood, are various, which may be deduced and eftimated from the caưfes themfelves of thofe effects: if we compare together the blood of a living and of a dead animal, that which is healthy with that which is difeafed, and that which is inert, or too little moved, with that which circulates too fwiftly.---For we obferve, that, in the living, the blood is, (I.) Confiderably warm or hot. (2.) It looks red, with a fort of purple florid hue. (3.) It feems to be homogeneous or uniform, and alike in its parts, though they are really mixed, and of different principles. (4.) 'Tis made up almoft entirely of globules. (5.) It flows very readily thro' the leaft veflels; from whence being drawn, (6.) it exhales a volatile vapour, which we thall particularly defcribe, §. I 55 .-- In the dead animal, which has not yet begun to cotrupt or putrify, we obferve, (I.) that it has loft a great deal of its rednefs. (2.) That it feparates into a more denfe and a more thin fubfance. (3.) That it exhales no vapour. (4.) Being drawn out from the veins, it congeals either all or the greatelt part. But even in the living animal, when very weak, where there is fome pulfe or refpiration, though fmall, we find the blood cold, even to a confiderable degree. If, again, you compare the blood of a human perfon, unactive both in body and mind, with the blood of one that is addicted to violent exercife, you will obferve the latter has, (I.) A greater heat. (2.) A more intenfe rednefso
rednefs. (3.) A fubftance more compact, and rpecifically heavier. And, (4.) The volatile parts more abundant. All which appearances feem manifeftly the effects of the motion of the heart and arteries, fince they proportionably increafe and diminifh with that motion, and difappear when that ceafes.
§. 146 . That we may underfand the manner in which thefe appearances are produced, in the blood, we muft confider what are the effects of the heart impelling the fame, and of the arteries alternately compreffing and urging it forward. And firt we fee, that the heart drives the blood into the arteries with a celerity which exceeds that of the moft rapid rivers, (§. II 5.). With a confufed or vortical motion, the heart thus throws the blood into the crooked or inflected arteries, in fuch a manner, that the right globules, expelled through the opening of the aorta, frike againft the left fide of the artery, from whence being repelled, they incline towards the right fide, whereby all the particles of the blood are agitated with a confufed or turbulent and whirling motion. The blood, thus impelled againft the flexile and curved fides of the arteries, of neceffity dilates or diftends them into a greater convexity; and laftly, in the fmaller veffels, capable of receiving only one or a few of the bloodglobules, all the faid globules come fo intimately into contact with, and grate againft the frdes of the faid artery in all their points, that they are even obliged to change their figure, in gaining a paffage into the veins.
§. 147. But the arteries, by their elaftic force, reacting upon the impinging blood, repel the fame from their fides towards the axis of their light or capacity; and, at laft, tranfmit every fingle particle of it through the circular mouths of the leaft veffels, by which the arteries and veins join together.
§. I48. There is, therefore, a moft prodigious degree of friction, as well of the bloodglobules againft the fides of the arteries, as of the arteries themfelves, contracting round the blood, like an obftacle; to which, add the attrition of the particles of the blood amongft each other, by the confufed and vortical motion with which they are propelled. The effects of this friction may be computed from the vifcid and inflammable nature of the blood itfelf, from the narrownefs of the veffels, thro' which it runs, and from the ftrong impulfion of the heart, joined with the powerful reaction of the arteries; to which, add the weight of the incumbent parts, raifed by the force of the arterial blood. This friction generates a fuidity in the blood, by perpetually removing the points of contact in its globules, and refifting their attraction of cohefion. By deficiency heein, the blood coagulates in the vefiels before death; and from hence, the loft fluidity of the blood is again reftored, by recovering the motion of the heart, as we are taught by experiments made on living animals. We muft, likewife, own it for the generating caufe of heat, which conftantly arifes from an attrition of the parts of all fluids, even of air itfelf,

128 AEtions of the Arteries
by experiments; but much more does this attrition heat in the elaftic and combuftible animal juices, which are denfer than water, and compreffed with a confiderable force, by contractile and converging tubes. [Is not the truth of this fufficiently evidenced, by the blood's being warm in thofe fifh which have a large heart; and cold in fuch as have a fmall one? from the more intenfe heat of birds that have a larger heart, and more frequent or quick pulfations? and from the increafe of animal heat, that enfues from exercife of all kinds, and even from bare friction of the parts?] That this animal heat is generated chiefly in the lungs, we are perfuaded by many arguments, which we thall propofe, when we come to speak of the refpiration. At the fame time, by this rotation and mutual attrition, the particles of the blood acquire their fpherical figure; and even the filamentary, rough, and wregular fhaped particles, having their eminencies, in a great meafure, ground fmooth, approach nearer to the nature of. fpheres. But again, the fragments, from the furfaces of the irregular fhaped particles, will, by this friction and rotation, with the fpherical lights of the imaller veffels, put on a round figure.
§. 149. But the different natures of the feveral particles themfelves, which conjunctly make up the mafs of blood, are the caufes whereby, from one and the fame impetus of the heart, different effects or confequences are produced in different particles of the blood. Namely, thofe particles move quicker, whofe
greater denfity makes them receive a greater impetus, and whofe apt figure or leif extended furface makes them meet with lefs refiftance in the fluid, in which they move. Thofe alfo are drove along more fwiftly, which, either from their weight, or from the direction in which they pafs out from the heart, are urged chiefly into the axis of the veffel. Thofe again will ftrike againft the convexities of the flexures in the arteries, which have the greatef projectile motion; while the other parts of greater bulk and tenacity, having lefs projectile motion, will move fluggifhly along the concavity of the veffel. And, in this manner, is the blood prepared or difpofed for the feveral fecretions.
§. I 50 . The fyftole of the arteries renders the parts of their contained fluids more denfe or compact, while they contract round the blood, as round a folid obftacle, which being in fome parts vifcid and compreffible, they drive and expel the more liquid parts into the lateral mouths or ducts, at the fame time increafing the points of contact betwixt the globules themfelves, uniting together their more large and denfe fpherules, and compacting the flat particles into denfer bodies. From this denfity, the rednefs of the blood feems chiefly to proceed; for that it is not merely the effect of the lungs, we are affured, from obferving the fame in fifh, who have no lungs; but that the blood's rednefs follows from its increafed denaty, we are affured from the philofophical laws and optical experiments of Sir Ifaac New-
ton; and from experience itfelf, which hows us, that both the denfity and the rednefs of the blood are always increafed together, by increafing the exercile and motion of the mufcles, or even barely by accelerating the jet or ftream of blood, that defcends in a large arch from the vein into a veffel.
§. I 5 I. Moreover, the mouths of the leaft veffels, pervious to only one globule at a time, feem to be a fort of moulds to figure and break off the angular eminencies of the particles in the blood, and bring them to a fpherical figure, which, at length, they put on, and change into perfect fpherules. Laftly, from hence arifes the denfity of thofe particles, fince of all figures, fpheres contain the moft, within a given furface.
§.152. The reitucular diftributions and inofculations of arteries §37.) removes any danger of obftruction, fince, in any part of the artery, where the blood cohering, begins to form an obftruction, a contrary flux is admitted, whereby the obftructing matter is repelled to a larger part of the trunk, and thus, betwixt the reflux and the direct torrent of the blood, the faid matter is broke and attenuated. This mechanifm alfo fupplies the deficiency from an irremoveable obfruction or the lofs of a veffel, by caufing a greater diftention or enlargement of the next adjoining or anaftomofing veffel; as is proved by experience in furgery, after tying and cutting a great artery.
§. 153. As the quicker motions of the blood in the trunks conduce to fanguification, fo the
nower motions of it, in the leaft veffels, have their effects towards the fecretions. In the larger arteries, we fee the different particles of the blood are whirled about amongft each other, with a rapid and confufed motion ; but, in the leffer ramifications, the progreffive motion of the blood being diminifhed, the more loofe colourlefs particles depart laterally from the more denfe and red globules, while the latter, keeping on their courfe more firmly along the axis of the veffel, expel the former laterally, and to the circumference. Thus the attractive powers of the particles in the blood increafe, as their progreffive motion abates; hence, the oily or fat particles are drawn one to another, and go off by the open lateral ducts, which lead to the cellular fubftance, which particles we know are both grofs and fluggih : and again, other thinner juices are fent off through lateral branches of a much fmaller orifice, 'till, at length, little more than the red blood alone remains to pafs through the evanefcent artery, into the incipient vein. But all thefe particulars, whereby the blood is difpofed for the fecretions, we thall confider more opportunely hereafter, in Lecture VIII.

> REMARK.

Dr. Clifton Wintringham, in his experimental enquiry concerning the arteries and veins, has given us feveral obfervations worthy of notice; the principal of which are, That the veins are denfer in their membranes than the arteries: the aorta of a young man dead 48 hours weighed to water as 106 to 100 , and the rena cava to water was 110 to
100. The thicknefs of the aorta was one ninth of an inch, but of the cava only $\frac{{ }_{5}}{5} 44$ of an inch; fo the artery appears thicker than the vein as 17 to one. Thus the arteries being lefs denfe than the veins, are better adapted to continue the actions of life a longer time, without growing rigid and bony or cartilaginous, by the impulfe of the blood againft their fides: for had the arteries been originally as denfe as the veins, the animal could not have lived fo long. For, by his fecond propofition, it appears experimentally, that the arteries are more denfe and rigid, as the animal grows older, whereby, when their refiftance equals the diftraetile force of the heart, they determine the fize and growth of the perfon, (§.252.). For in young perfons, the veffels are obliged, by their conical figure, to yield more in length, than diameter, to the diftending force of the heart; but when the firmnefs of the arterial coats can fuftain the impulfe of the blood, without an elongation of their fibres, the perfon grows no taller. As thofe arteries, which fpring neareft from the aorta, have a greater fhare of the heart's impulfe, they are therefore more denfe than their next collateral or fmaller branches, which, being gradually more lax and eafily diftendible, is one caufe of the blood's flowing fo readily from the trunks into the arterial branches. Thus, generally, the fluids prevailing over the folids for the firf 20 years, the perfon will be fo long growing; and then, for 20 years more, the perfon will be nearly at a ftand, from the equilibrium of the folids and fluids, which now admit only a lateral diftention, by which the perfon grows not in height, but increafes in bulk (which is not properly growth, as it fprings not from any folid concrement, but an accumulation of fat and juices, that was formerly fpent in growth); and then, for 20 years more, the folids, by repeated action, being grown
too denfe, the equiiibrium turns on their fide, the fat and juices, formerly collected, are now confumed and expelled by the greater power of the veffels; and, as we fee from experiments, the fmaller veffels, concreting into folid fibres, make the arterial coats much thicker and tougher in old, than young fubjects: in confequence of this, the force, to excite any degree of motion in young animals, muft be increafed to produce an equal effect on the fibres and veffels of an old one. Hence we fee a greater influx of fpirits is neceffary to actuate the organs of an old perfon, which yet cannot be now fecreted by a brain more callous and impervious, from a blood leffened in its proportion, ill-circulated and ill-formed by a weaknefs and inactivity, now obtaining in both the fanguificative and chylificative organs, \&c. Hence a ceafing of the fecundity and menfes in women, a collapfed or fhrivelled habit in old men, univerfal torpor, tremors, \&cc. And thefe experiments alfo furnifh one reafon, why confumptions, from a rupture of the pulmonary veffels, feldom happen before the age of 20 or after 40; becaufe, in the firft Itage, the redundance of juices is employed in the growth; and, in the laft, the over denfe fibres and veffels do not fo eafily break or yield to the impelled fluids. - An inch of the aorta from a young man burft with the force of I3I pounds, 10 ounces. The aorta of males is near a fifth part denfer and tougher than in females; but the veins, as in the cava, only a fixth or feventh part. But even the aorta is lefs denfe, or more eafily dilatable near the heart, than its branches. So by experiments, we fee it is a juft obfervation of Dr. Pitcairn and Friend, that the inferior feries of veffels are proportionably more capacious (a fifth or fixth part) in females than males, and in comparifon with the upper feries of veffels; whence a greater flow of blood for the fcetus and
menfes. But the veins in females are fmaller, fo that the blood moves fafter in a woman's veins, and flower in her arteries, whereby its fluidity is better maintained, and its texture lefs vitiated by the numerous obftructions that attend geftation.The extrordinary capacity of the cava above the emulgents, beyond that of the aorta, being nearly as two and an half to one, makes it of fingular fervice as a refervoir to collect the blood, or fupply the heart in weaknefs, and prevent a furcharge in punning, ftraining, fullnefs, fevers, \&xc.-Anatomifts have erroneounly fuppofed the ftrength of arteries and veins to decreafe in proportion, as they grow lefs in thicknefs; for, by experiments, it appears the thinneft veffels have often a much greater degree of compactnefs and ftrength, proportionably than the larger; and fome whofe coats are extremely thin, exceed in ftrength the aorta, whofe coats are ten times as thick. The emulgent artery was found a fifth or fixth part ftronger than the aorta at the heart ; and the emulgent vein was two thirds ftronger than the cava. The porta was ftronger than the fplenic vein nearly as 5187 to 1000 . The fplenic artery was ftronger than the iliac nearly as 148 to 100 ; but the iliac vein was ftronger than the fplenic as 35 to 10 nearly; and the emulgent artery was ftronger than the iliac artery as 1376 to 1000 . In a word, the arteries are infinitely diverfified as to their frength and capacity, obferving no regular proportion; whence it is abfolutely impracticable to account for the fecretions thence. -The veffels of the pericranium, dura mater, pleura, and all denfe membranes, efpecially thofe attached to bones, fhall have a violent degree of pain from a diftention, that will not affect other veffels; becaufe the former, yielding in points leaft refifted, will not dilate in a fhere, but an ellipfis or a lefs figure; whence the reaction
reaction of the refifting parts will be turned upon thofe that yield, whereby the diftraction and pain will be double, if only half the veffel can dilate. Hence we fee, why pain may be in fome veffels and not in others, coming from the fame trunk, and urged by the fame diftending caufe: and why pain is more violent in ftrict, tenfe habies, than where the the fibres are lax, \&c.

K 4
LEC

LECTUREVII.

Of the nature of the blood and juices of the kuman body.
§. I54. HE very complex liquor, which is contained in the beating arteries and their correfponding veins, is called, by one general name, the blood, which, to a loofe examination, appears homogeneous, or of fimilar parts, red and coagulating throughout. But experiments of divers kinds have fhown us, that diffimilar parts of various natures refide in the compofition of this animal liquor.
§.155. Hydroftatical experiments demonftrate in the blood firt a kind of volatile vapour or exhalation, which immediately and continually flies off from the warm juice, with a fort of foetid odour coming betwixt that of the fweat and urine. This vapour, being catched and condenfed in proper veffels, appears of a watry nature, joined with a fmall tincture of an alcaline difpofition.

REMARK.

This halitus of the blood confints of an ammoniacal falt, fo attenuated as to be volatile, without altering its nature much to the alcaline clafs; which, joined with a fmall portion of oil and much water, affords that remarkable nidorous fmell upon opening a dog, hog, or other carnivorous animal, whilft warm; for in oxen, fheep, calves, \&c. feeding on grafs or grain, it has fcarce any perceptible fmell ; fmell; but in mankind, it has a very particula ${ }^{\mathrm{r}}$ odour, flying off chiefly in the perfpiration, by the fcent of which, every dog can diftinguin and follow the foot-fteps of his mafter.
§. 156. After this vapour is gone off, the blood of a healthy perfon fpontaneoufly congeals into a fciffile trembling mafs; and with a lefs degree of heat than that of boiling water, (viz. 150 gr. i. e. 62 lefs than boiling water) it grows more tough, like to a boiled egg. But even within the veffels of a living perfon, dying of a fever, the blood has been feen by the violence of that diftemper, changed into a concreted tremulous jelly throughout all the veins. The principal part of this coagulated mafs, is the cruffamentum or cruor, which has the red colour peculiar to itfelf, and gives it to the other parts of the blood. This, if it be not kept fluid by the attrition of a vital circulation, or fome fimilar concuffion, runs confufedly into a compact, but foft mafs, merely by reft and a moderate degree of cold, as it alfo does by the addition of alcohol, hy mineral acids, or by a heat of 150 degrees, [of which 98 is the blood's heat in robuft people; 175 boil alcohol vini; 190 boil proof brandy; and 212 boil fpring water.] 'Tis either as a fluid or a folid fpecifically heavy, and more fo than water, by near an eleventh part ; and when freed from its water, it is wholly inflammable. In a mals of healthy blood, one half or upwards is red cruor; and in ftrong laborious people, the ferum makes only a third part, and is fill
§. I 57 . Next to this comes the white or clear and the yellowifh part of the blood, which again feems to be a liquor, confifting of homogeneous or fimilar parts, when it is not really fo. This ferum (as it is called) of the blood is, in general, one thirty eighth part heavier than water, and almoft a twelfth part lighter than the red globular mafs of craffamentum: this too, by an heat of 150 gr . or by mixture of mineral acids or alcohol, and by a concufive motion is congealable into a much harder coagulum than the red cruor ($\$.156$.), or mixed mafs (§.154.); and forms an undiffolvable glue, a fleh-like membrane, which, at length, Thrinks up to a horn-like fubftance. From thence are formed the pleuritic cruft or fkins, polypuffes and artificial membranes. In this ferum of the blood, befides the albumen, which will harden like the white of an egg, there is concealed a great deal of fimple water, which even makes the bigger part of the whole, and fome quantity of a ropy mucus, drawing out into long filaments, like fipiders threads; which laft, however, is not coagulable like the albumen, neither by fire nor by acids.
§. 158. But by putrefaction only, or the difiolving power of the air hot to 96 gr . equal to the blood's natural heat, the whole mafs, but efpecially the ferum, diffolves or melts into a fuetid liquor, firft the ferum, and then the cruor more flowly; till, at length, the whole mals, both of ferum and cruor, are turned
into a volatile and foetid exhalation, leaving yery few fæces behind. When the blood has been once diffolved by putrefaction, there is no artifice can harden or congeal it; as there is none likewife that can refolve it again, after it has been once coagulated by fpirits of wine. [The natural gelatinous denfity and cohefion of the blood is diffolved in malignant and contagious fevers.]
§. 159. Befides thefe parts of which the blood appears to confift, without fubjecting it to any violence, it contains in its fubftance a quantity of fea-falt, which is difcernable to the tafte, and fometimes vifible by the microfcope. The fine chalky earth, lodged in the blood, is demonftrated from its affording the matter of nutrition and from a chemical analyfis, whereby it appears to lodge in the moft fluid parts of it, and is more efpecially intimately combined in great plenty in the oily parts of the blood. Another part in the blood is air* in an unelaftic ftate, and that in a very confiderable quantity; [to the weight of balf a ccruple in an ounce] the exiftence of which air, in the blood and ferum, is proved by their putrefaction and diftillation, or by removing the ambient air from them by the pump. But we are not to think from hence, that the blood-globules are bubbles full of air, for they are fpecifically heavier than the ferum, and make no dilatation, by taking off the preffure of the atmofphere from them by the pump. [Laftly, it appears from late expefiments, that the caput mortuum or athes of the blood are repleat, with a fort of iron, which
which the load-ftone will attract; and which being found alfo in the afhes of vegetables, as well as animals, and in moft earthy bodies, is, therefore, by fome, reckoned an element or conftituent principle of bodies.]

R E M A R K.

* The air, as a fixed element in the compofition of folid and fluid bodies, has been generally overlooked by philofophers, and even by the chemifts, who have, above all fects, gloried in their knowledge of principles or elements; until Mr. Boyle, Sir I. Newton, and more efpecially Dr. Hales, by many curious and ufeful experiments, demonftrated, that a great part of the fubftance of moft bodies, in feveral to half their weight, is a perma. nent or unelaftic air, which being freed [either (1.) Nowly, by the air-pump, putrefaction, fermentation, diftillation, \&xc. or (2.) fuddenly, by exploflons, fulminations, ebullitions, mixtures, \&cc.] from the other folid particles, affumes its elafticity, and fills an immenfe fpace, in comparifon of the body from whence it came. Among other experiments, Dr. Hales found a cubic inch of blood, in diftillation, afforded above 30 times its bulk of elaftic air; whofe particles are, in effect, the wedges of nature, which, depofing their elafticity, pin and cement together the other elements (V. remark ad §.2.) and particles of bodies for their growth or accretion; and, under other circumfances, regaining their elafticity, ferve to break and repel again thofe parts for the defruction or diffolution of the compound, whore matter may be, by the fame inftrument, again differently affembled and combined for the forming of other bodies. In general, the-nitre contains moft air among the foffl falts, which being fet fuddenly at liberty, by explofon, gives the force of gunpowder; among vegetables
getables, tartar is half its weight air, above eight gallons in an ounce; and the fame proportion of air is there in human calculi, from the gout, kidneys, or gall bladder; next to thefe, the bones have moft, the folids more than the fluids, the craffamentum than the ferum, \& c. See more of this in the vegetable and hæmaftatics of Dr. Hales, which, for their copious, new, curious and ufeful matter, deferve a place in every Phyfician's library. Some poifons difpofe the permanent air-particles to turn elaftic, and feparate from the animal juices, with which they are incorporated; whence a wonderful turgefcence of the cellular fubitance and fmal! veffels throughout certain parts, or through the whole habit. And hence, from the ftagnant and putrefcent juices, may arife emphyfematous tumours, and a tympany of the abdomen; how much foever, fome furgeons may ridicule the notion and name of thofe diitempers. There is, without doubt, a circulation of fixed air, abforbed by the inhaling veffels of the lungs, alimentary tube, and kkin ; and the lungs probably exhale again fuch particles, as regain their elafticity in the blood. For that there often are fuch elaftic parts of air in the blood, efpecially after drinking flatulent wines, cyder, \&xc. I am very certain, from the collifion and rattling I have often heard them make in the auricles or ventricles of my heart; which I frequently humoured and varied by different geftures of the thorax, and degrees of refpiration; and I know not what could become of this air, unlefs it efcaped by the lungs, or was abforbed again as a folid by the blood.
§. 160. Among other bodies, chemiftry has various ways endeavoured to Khow us the nature and principles of the blood; which being freh
frefh drawn, and diftilled with a flow heat, [gr. 212, or below boiling water] yields a water to the quantity of five parts in fix of the whole mafs; which water has little or no tafte or fmell, 'till you come towards the end of the operation, when it is proportionably more charged with a fœtid oil, as it draws nearer to a conclufion. (2.) What remains after you have drawn off this water, being expofed to a ftronger fire, yields various alcaline liquors; of which the freft being acrid, fœetid, and of a reddifh colour, is ufually called the \int pirit of blood; confifting of a volatile falt, with fome little oil, diffolved in water, to the amount of one fiftieth part of the whole original mafs of blood. (3) A little before and together with the oil, that next afcends in the diftillation, a dry volatile falt arifes and adheres in branchy fleeces to the neck and fides of the glafs; and this in but a fmall proportion, lefs than an eightieth part of the firt mafs. (4.) The next liquor is that called oil of human blood, which afcends gradually thicker and heavier, at firft yellow, and afterwards darker to a black, 'tills, at laft, it refembles pitch; being very acrid and inflammable, but in a fmall quantity, about a fiftieth of the whole mafs. (5.) What now remains of the blood, in the bottom of the retort, is a fpongy inflammable coal or cinder, which being kindled burns away, and leaves afhes behind; which, being diffolved into a lixivium with water, affords a mixed falt, partly fea-falt and partly fixed-alcaly, leaving a mere dead earth in the filter. This fixed falt is farce
the five hundredth part of the firt mafs, and has in itfelf only one fourth part alcaline: but being urged with the moft intenfe degrees of fire, the whole falt affords fome portion of an acid/pirit; which we judge to arife partly from the fea-falt in the blood, fome of which is demonftrable even in the fpirit of blood, and partly from the vegetable kind of the aliments, not yet digefted into an animal nature. For which laft reafon, an acid is procurable from the blood of graminivorous animals, as well as from that of man. But the earth, feparated from the lixivium by filtration, will, perhaps, make about one hundred and fiftieth part of the original mafs ; and contains fome particles which are attracted by the load-ftone. The ferum only of the blood, by diftillation, alfo affords altogether the fame principles; only the water is more abundant, as the oil and earth are in a lefs proportion.

$$
\mathrm{R} E \mathrm{M} A \mathrm{R} \mathrm{~K} \text {. }
$$

Add to thefe, another very confiderable principle of the blood, even three times the weight of the earth it contains, and, when feparated, near 40 times the bulk of the whole mafs, [to which add, the elementary æther or fire, §. 2.*] viz. the permanent air, which, as we before obferved, (remark to §. 159.) is ufually overlooked, becaufe it arifes invifibly in the diftillation; though, if the veffels are too clofe luted, or the fire urged too brifkly, it will generally make the operator hear, at leaft, if not feel it, by burfting his glaffes. Obferve again,

[^6]
144
 Nature of the Blood.

that thefe are not the natural, but factitious principles of the blood, i. e. to fay, they have neither the fame forms, nor the fame properties, when they are combined together to make blood, as they appear to acquire by an artful feparation. We can only fay, that fuch a number and proportion of the more fimple or elementary fubttances of the univerfe, concur to make the natural elements of the blood, i. e. fuch as the mechanirm of the human body itfelf forms of the ingeted aliments, which are only two, viz. albumen and globules, viz. one an unorganifed, colourlefs, inodorous, and infipid jelly, like the white of an egg, fomewhat ropy or filamentary, in proportion to the celerity of the circulation, and differing in tenuity, as it paffes through leffer orders of veffels. This makes the irnmediate matter of growth and nutrition, by flicking to the fides of the leart fibres, when it is poured in betwixt them by the leaft veffels, while the elaftic organifed globules of the leart or fmalleft clafs, which make the organic part of the nervous juice, from their greater fufceptibility of motion, moft likely re-enter the cells or other pores that can fend them again into the common circulation. There are then as many kinds or degrees of tennity in the nutritious albumen of the blood, as there are orders of globules, and frnaller veffels to pars through, before the firft can adhere as nourifment to the leaff fibres. The organifed or elaftic elements of the blood are then neceflary in a certain proportion to grind and prepare the other albumen; and are, cherefore, to be efteemed a folid permanent part of the body, fince they never pafs the emunctories, but by excefs or difeafe. As for the faline, acid, morbid, bilious, \&cc. particles, to be found mixed in the current blood, thefe are rather heterogeneous than elementary parts of it , and reftrained to the fecretory
veffels only, which fend them off to make the excretions and certain few fecretions.-As to the particles attracted by the load-ftone from the earth of the blood, which may feem fo Atrange to fome, 'tis obfervable, that Sir Theodore Miayern and Dr. Lifter found, that many fuch particles were always lodged in human calculi, and might be alfo extracted from the afhes or earthy parts of moft plants; whence fome have thought the minera of iron a kind of univerfal element or principle of mixt and text bodies, and, I think, not very injudicioufly, fince they are more or lefs diffufed through the whole earth and waters, and never touch any falt of what kind foever, but intimately join with them into a vitriol, which is more or lefs in all fprings whatever; and it is notorious, that yellow brewer's-clay, loom, fands, \&cc. are all tinctured by iron; what wonder then if it afcends with the falts of the earth into vegetables, and with them paffes into animals, in both which, its patticles fhall be intrinfically, from their own nature, fome of the firft that lay the bafis of accretions, whether natural or morbid, in animal or vegetable bodies.
§. 16I. From the preceding analyfis of the blood, it evidently contains a variety of particles, differing in bulk, weight, figure, and tenacity ; fome watry, others inflammable, and moft of them inclined greatly to putrefaction, or to an alcaline corroding ftate. For the blood, in a found healthy ftate, not injured by putrefaction, or too violent a degree of heat, is neither alcaline nor acid, but mild or gelatinous, and a little faltifh to the tafte; yet, in fome difeafes, it is hharp enough, and comes near to a fate of putrefaction; as for inftance,
in the fcurvy, where it corrodes through its containing veffels, and in thofe who have an afcites or dropfy, whofe waters are often much of an alcaline and corroding nature. But that which is as blood in infects, affords a charp alcaline calx, effervefcing with acids. If human blood be mixed with alcohol or ftrong mineral acids it runs into a coagulum ; but, by the milder vegetable acids, verjuice, vinegar, lime-juice, \&cc. and alfo by alcaline falts, fixed or volatile, but efpecially the laft, and by nitre or all neutral falts, it continues or even re-affumes its firf fluidity. There is no falt with which the blood makes any effervefcence. Violent exercife, too long continued with too great external heat, foon diffolve the blood into a putrid ftate even within the veffels of a living perfon.

> REMARK.

We fee hence, that too much or too little motion of the blood will, either of them, caule a morbid acrimony, the firft in a little time as in fevers; and the laft in a longer time, as in cachexies, fcurvies, \&c. In the fevers, which begin without any diffolving contagion, as well as in too much or long continued hard labour, the blood runs on from the beginning toward the height, through various degrees of inflammatory tenacity, i. e. to fay, the more thin and aqueous parts being gradually more thrown out by the fluid fecretions, the nutritious albumen or glue in the blood, which forms a fort of cruft round the furface of each globule, becomes fo thick and tenacious, that they join more ftrongly together into cohefions, unlefs kept afunder by motion; but the fame degree of motion or impetus will make thofe globules keep changing
changing their points of contact longer, which have the greater denfity, i. e. the red ones; confequently the fmaller pellucid globules will, in this cafe, from their lefs motive power, and from their greater furface, which augment the attraction of cohefion, firft run into filamentary concatinations; for when the attraction of cohefion is increafed to a certain degree, their fpherical figure will, in all points of contact, be depreffed like flattened cakes, and that more or lefs in various degrees, proportionably to the fewer faline, watry, \&xc. particles, which interpofe and prevent their clofeft cohefion. This will account both for the production, increafe, and degrees of toughnefs in the pleuritic inflammatory cruft of the blood, which is ever an attendant, more or lefs, upon an accelerated circulation through the whole fyftem, or only fome particular part, from pain particularly, provided there is, at the fame time, no faline, putrid or diffolving acrimony in the mals. If the arm of a perfon, who has healthy blood, and no fhow of this cruft, be tied up for fome few (10 or 20) minutes, a fort of temporary, but little painful inflammation is produced in that part; the aqueous and the thinner juices are urged into the cellular fubftance and fimaller veffels from the red blood, whence a turgefcence of the limb below the ligature, by which the blood, in a degree, confined and ftagnant in the veins, will have fome of thofe parts tending to concretion, which retain the leaft impulfe or motion, namely, the pellucid larger furfaced globules, now from ftagnating, more thickly incrufted with the cohefive glue; whence, upon extravafation into a cold veffel, they thall be the firt that run into cohefion (not with the red globules, for thefe, having lefs furface in proportion to their matter, have lefs cohefion, but) with fimilar particles, fo as to form a white cruft, propor-
tionable to the tenfity of the ligature, and length of time the arm was bound up, provided the vein was opened with a large free orifice; for this feparation or fortment of fimilar cohering parts is begun in the vein, and lodged, as it were, in feveral circular ftrata, moft next the coats of the veffel, and is then, at length, compleated, when let out into the veffel; but a fmall orifice, as it lets out only the quicker-moving central thread of the cylinder of blood in the vein, confiiting of the redder denfer particles, will give little of this cruft, and of courfe but little relieve the pain; which it occafions, by lining the fides of the leaft arteries with too thick an incruftation; whence they will be fuller, tenfer and harder, and of courfe more painful. Hence we fee the ufe and action of nitre, neutrals, falts, vegetable acids, and volatile alcalines well diluted, towards removing this phlogitton of the blood; which, we fee, is no longer to be found, when the cohefive glue or albumen begins to diffolve by a return of putrid bile or a putrid alcalefcent ftate of the juices in general, brought on by the length and intenfity of the fever. You may, in like manner, account for its appearance, when the veffels are obftructed in women with child, as from the ligature above. As this phlogiton lies moft in the leaft arteries, and thofe veins in which the blood moves floweft; therefore, we fee how cupping, by difcharging more of it, relieves the pain better than bleeding from a large vein, in which the blood moving fafter contains proportionably lefs of the faid inflammatory lentor. Alfo, why bleeding from a large orifice relieves more than from a frmall one. How a blifter, by the alcaline diffolving force of the calx in the blood of the Spanifh and other fcarab flies, is fo ureful to thin, diffolve, abfterge, and thake off this lentor from the fides of the leaft veffels, where it moft hefitates:
for a blifter is often of ufe, by thofe parts of it which enter the blood and diffolve the juices; when its action, as a ftimulus upon the folids, is rather mifchievous; and hence bleeding, diluting, clyfters, \&xc. are moft neceffary companious of it, while, at the fame time, that the juices may be fupplied with the virtue of the flies, the firt blifters mult be either dreffed with an ointment of them, or a fucceffion of new blifters to other parts be made. But in pleurifies, and other pains from a cold, acid, and ropy vifcidity in the leaft veffels, quite oppofite to the phlogifton, blifters have alfo a double advantage; fince there a brifk degree of fever and ftimulation of the folids, as well as a diffolution of the vifcid lentor, is required. Therefore, in all fevers, where the blood does not tend to a colliquation of its glue and globules, from contagion, bile, pus, or an alcalefcent putrefaction, a timely ufe of blifters and cupping to proper parts will ever turn to good account; if where the pulfe is hard, and the blood buff, you bleed and dilute well with nitre and acids; and if with a foft pulfe and poor watry blood, you give the bark with nervous and diaphoretic (viz. Julep. Camph. Tinc. Caftor. Valer. \&c.) medicines after firt clearing the paflages by a moderate dofe of rhab. alone, or with calom. \&c. A nother advantage will attend an early ufe of blifters to the feet, as a revulfive of the phlogifton, and of the cold vifcid lentor likewife from the pneumatic and fanguificative vifcera, no leís than as an attenuater of it ; whenever you perceive it begin to fettle in thofe organs, where it excites, agreeable to the nature and ufe of the organ, and degree of its accumulation, thofe moft numerous and troublefome fymptoms, by which, without much altering their effence or cure, fevers are largely diverfied. 'Tis then evident, (I.) That in all true fevers there is fome matter to be
prepared and expelled from the blood by nature, or the conjunct powers of the nervous and vafcular fyftem. (2.) That this matter is either a cold, vifcid, acidifh, ropy, and crude matter, as in intermitting, leuco-phlegmatic, flow, nervous, and moft hyfterical or hip fevers; of which, the fever itfelf, with blifters, the bark, and nervous corroborants are the cure: or it is of the pleuritic inflammatory kind, which, as a phlogifton, having once taken up its feat in the fmaller arteries and veins of fome part, multiplies itfelf, and increafes or continues the fever, 'till its action has introduced fuch a faponaceous, diffolving, or alcalefcent ftate throughout the juices, as, at length, melts and expels the phlogiftic lentor itfelf; which then, like a well concocted matter, runs off critically by fome emunctory. Here, to prevent the colliquation from extending beyond the lentor, even into the firmer globules of the blood itfelf, fmall, and often repeated, dofes of the vitriolic acids, alum and the bark, have a moft certain, and almoft miraculous, effect in caufing a precipitation of the now fubdued matter by the renal, inteftinal or cutaneous outlets, and in reftoring the lately overftrained veffels immediately to their due action and effects upon the contained fluids. To which practice, I was lead (having the rationale of the thing, and the practice of Dr. Morton on my fide) with the moft furprifing fuccefs, wherever it was ordered; and I have now the pleafure of feeing the fame practice almoft as ftrongly recommended by Dr. Huxom, from his own ample experience. Only two things you muft have a regard to; namely, (r.) To fee that your lentor is fully fubdued, or that this colliquative fate of a fever be actually begun, as you will know by the ceffation of pain, foftening of the pulie, length and degree of the fever that has preceded, \& 8 . as wel! as from the appearance of the
blood itfelf, which fhould now be drawn in no greater quantity than will fuffice to give us a view of its ftate. (2.) That your patient have no icteritious or bilious appearance, denoting, that though the lentor be fubdued in the other veffels, yet a part of it ftill lurks, in a manner, almoft out of the high road of circulation, in the flow moving veffels and juices of the liver; for here our good medicine will, by coagulating and fixing the lentor, either caufe a new fever, or fuch an infuperable obftruction, as muft pave the way to an hundred chronical diftempers, which are too frequently to be met with in perfons not judicioully cured of fevers. - Even in the third and laft kind of febrile matter, which is generally contagious, epidemical or eruptive, a moderate ufe of the fame medicine, to guard the texture of the blood and fmaller veffels from the diffolving force of the febrile poifon, in the height and declenfion of the diftemper, will be of great ufe; if you remember at the fame time, that this matter, not being fuperable, like the former, by nature (the characteriftic of a poifon) muft be expelled with a moderate ufe of the mild diaphoretics.
§. i62. Laftly, by viewing frefh blood in a fmall glafs tube by a microfcope, or by infpecting it with the fame optical inftrument, while it is yet moving in the veins of the living animal, we diftinguifh its foft, red globules, which are elaftic, fo as to be able to change and recover their figure, and which, doubtlefs, make that part called cruor or craffamentum of the blood, mentioned at §. I 56 . [If it be queftioned, whether thefe are not rather oleaginous lenticular particles, of the fame kind with thofe obferved by Lewenhoeck in filh,
L 4
and
and lately difcovered in our own fpecies? we confefs it is a point difficult to determine ; but the ready and frequent divifion of oil or fat into slobules by concuffion feems to countenance fucb an opinion.]
§. 153. Thofe red globules (§. 162.) we fee fwimming in a thinner liquor, in which, by the fame microfope, we alfo diftinguinh leffer yellow globules; and obferve, that the red ones diffolve into fimilar yellow or fmaller globules, by reft and warmth. The diameter of the red globules is, by the mor accurate experimentors in this way, computed at $\frac{1}{3 \pi} 7 \sigma$ of an inch.
§. 164. The pellucid water remaining, in which the former globules were obferved to fwim, does yet, by the finer microfcopes, appear to contain ftill fmaller globules of an aqueous clearnefs, with various fpicula of falts.

REMARK.

The difcovery and confideration of this mechanifm of blood, whereby we fee it, in great part, confifts of clantic, organic, round machinulæ of various denfities and diameters, which, by their greater mobility from one common impulfe, grind and attenuate the other vifcid nutritious and filamentary or ropy parts of the blood, is of the laft importance towards underftanding the nature, action, and cure of fevers, poifons, and moft diforders fringing principally from a vitiated fate of this general fource, from which all the other animal juices are fupplied. We obferve, that fugar boiling in a fyrup at the bakers, in fome meafure refembles the blood, as a foft or folid body, (re-
mark to §. I.) kept by the violence in a ftate of fluidity. This, when its watry parts are exhaled. enough to give the fugar fo great a heat as to extricate and expel part of the included permanent air in the fhape of elaftic veficles or bubbles, (remark to §. 159.) it fwells to fuch a degree from the faid air confined by the tenacity or cohefion of its parts, that the whole would foon be thrown out of the copper, if it were left to itfelf. But to prevent this, a fpoonful of butter or oil thrown in, diffufes itfelf fo throughout the whole mafs, that, by leffening the contact and cohefion of the particles, the confined air readily efcapes as from water, and the fwelling or turgefcence immediately fubfides. Much in the fame manner, certain vegetable, animal and contagious poifons fhall, upon entering the mafs of blood, diffufe and diffolve that healthy degree of cohefion in the parts which is neceffary to make and keep it an organic fluid, that it fhall, in a little time, turn from a mild albuminous to a corroding gangrænous incolerent mafs, diffolving not only the globular texture, but alfo the pulpy fine vafcular fabric in the encephalon, almoft as foon as it can extend thither. Thus, among the vegetable tribe, aft the laurelwater, circuta-aquatica, the great purple-flowered wolf's-bane, deadly-nighi hade, her-bane, nux vomica, roots of hemlock-drop wort, (and even opium itfelf in a large dofe); only, as thefe are commonly taken into the ftomach, they begin the tragedy firf in that part, which, from its fenfibility and nervous confent, excites many fymptoms not feen in other poifons. Thus act the epidemical, contagious and peftilential poifons, with thore of the fnake kind. In how few hours the peftilential poifon will often kill, and melt not only the blood, but even the liver, fpleen, lungs, and other vifcera into a gangrænous incoherent mafs, thofe
are not ignorant, who have read the writers on the plague. And how foon the rattle-fnake poifon will have the fame effect, may appear from the late creditable relation, which father Feuill gives us in his journal of phyfico-mathematical obfervations made in New Spain, of a Dutch phyfician at Lima, who being herbalizing in a wood, and hearing a young Indian woman cry out from the bite of a rattle-fnake, immediately ran to her affiftance ; but well knowing the fatality of the poifon, fent one to call the parifh-prieft to give her confeffion and communion; but before he could arrive the died, and changed fo much in a few hours, that, in lifting her body, the flefh, like a pulp, came off as if it had been corrupted, which obliged them to put the body in a cloth to carry it to the church. What a colliquative ftrength the leaft quantity of this poifon has, may be feen from the terrible courfe Mr. Briental went through at Philadelphia, (Phil. tranf. $n^{\circ} .47^{8}$.) who, by the precaution of fucking his wound and fpitting out the poifon, (which benumbed his tongue and lips) making a ligature to confine what remained in the arm, and a copious difcharge by fcarifying his hand, and flitting the min of his fingers, was lucky enough to efcape with life, after lying ill nine days; though the hand and arm continued all the fummer fpotted like the fnake. Nor is the gangrænous diffolution and acrimony, which the blood often acquires by flow degrees in the fcurvy, much lefs wonderful; by which, in the account of Lord Anfon's voyage, it melted and eat through the tough calluffes of bones and hard fcars of old wounds, fo as to make them bleed afreth. But let us return from the difeafed, to the natural and healthy fate of the blood.
§. 16 From the preceding experiments compared togethers arifes that knowledge which
which we, at prefent, have of the blood; namely, that the craflamentum or cruor is compofed of globules, which being forced together by the coagulating caufes, (§. 1 56.) which increafe their attraction of cohefion, harden into a confufed folid mafs. The inflammable or combuftible nature of the faid globules is proved from dried blood, which takes flame and burns; as alfo from the phofphorus, or rather pyrophorus, (fince it not only fhines, but generates comburtible fire) which is diftilled from human blood; and from thefe probably arifes the greater part of the pitchy oil that is obtained from blood by the violence of fire, §. I60. (4.) But actual filaments, there are none naturally in the blood; though they may be made in it, by the addition of cold water.

> R EMARK.

The attraction of cohefion in particles being as their contiguous furfaces and tenacity of the incrufting fluid, the yellow and leffer globules will cohere together more powerfully than the red ones, as well from their greater furface and contacts, as becaufe moving flower in the blood, a more vifcid and thick glue adheres to them; whence by cold or intenfe heat, or a diminution of the interpofed water, thefe firft run into ftrong filamentary chains every way, like a fponge made of fpider's threads, betwixt which the larger red globules are locked up or intercepted; and by wailhing them out with water, from a cake of frefh found blood, you have the filamentary part compacted together like a fibrous ferh. And as thefe lefs globules thus more ftrongly attract each other, than they are attracted, eithes
cither by water or by the red globules; therefore, upon firring round a mafs of blood with your finger, \&ic. before it is congealed, inftead of fhooting every way like the threads of a fponge through the whole mafs, fo as to give it a kind of folidity, they will be wound up into a bottom of a compar fibrous confiftence leaving the remainder a purple uncongealing fluid, chiefly of water and the red globules, \&cc. Much in the fame manner, we fee in chemiftry, that fpiritus falis ammoniaci (cum fale tartori preparatus, which is fill no more than a falt diffolved in water) \& alcohol vini being mixed, the falt immediately fhoots every way like a lump of fugar, while the water and alcohol combined, are locked up in the cells or interfices.
§. I66. The yellow ferum of the blood appears likewife to confift of leffer globules fwimming in water; and is what we defcribed before at §. I57. In the watry or thinner liquor of the ferum, whofe particles are not vifible to the eye, there are contained the fame principles, with a portion of water, as was fhown in the blood itfelf, §. I60. of which the force of fire makes alcaline falts. In proof of this, we may alledge a difillation of the faliva or mucus with the nature of the perfpiring matter of Sanctorius.

REMARK.

The faline and oily parts of the ferum, as well as the blood, are in. a healthy ftate, neither acid nor alcaline, but neutral, of a peculiar kind, coming betwixt nitre, sea falt and fal ammoniac; whence healthy ferym, though brackin to the tafte, gives no pain to mound, to the eyes, nof, or to other
other fenfative organs, where even water alone will prove a ftimulus: but thofe few volatile alcaline falts and oils, which come into the blood from the aliments or medicines, or which are made by the vital heat and attrition, exhale chiefly by the perfpiration; which obftructed, caufes a retention of that matter, which, if retained in a confiderable degree, will ftimulate the heart and arteries into a fever, and tend to diffolve the blood into a putrid mafs, if left to itfelf. The fame perfpirable oily and faline parts, in a more exalted, putrid, and cauftic ftate, of which it is capable of various degrees, becomes the matter which propagates contagious fevers of all kinds; being in itfelf an ar mal ferment, that difpofes the airy, oily, and faline parts of the blood to feparate by a putrefactive or inteftine motion in the leaft veffels, where the pro. greffive motion is floweft, fo as to put on an acrid difpofition fimilar to that of itfelf: but the chemical volatile falts and oils of blood and ferum, as well as of other animal fubftances, are not the natural, but factitious principles of them made by force of fire.
§. 167. The exact mals or quantity of blood, contained in the whole body, cannot be certainly computed. Yet we know, in general, that the mafs of humours is much greater than that of the folids; only we are to confider, that many of them do not flow currently in the circulation, as the glue or jelly that lodges in moft parts, and the fat. But if we may be allowed to form a judgment from thofe profufe hæmorrhages, that have been fuftained without deftroying the life of the patient, with experiments made on living animals, by cirawing
out all their blood, joined with the bulk of the arteries and veins themfelves; from thefe principles, the mafs of circulating humours will be at leaft fifty pounds; whereof near a fifth part will be true red blood, current in the arteries and veins; of which the arteries contain only one fifth, and the veins the other four.
§. 168. Nor does the blood always contain the fame, or a like proportion of thofe elements or principles, which we have before defcribed in it: for an increafed celerity, whether by laborious and ftrong exercifes and a full age, (from 30 to 40) fever or otherwife augments the craffamentum with the rednefs, congealing force and cohefion of particles; and the hardnefs and weight of the concreted ferum with the alcaline principles are, by the fame means, increafed, §. I44. On the other hand, the ferum and the mucus it contains are increafed by the contrary caufes, the more as the animal is younger, lefs active or exercifed, and fed more on a watry vegetable diet, by all which the craffamentum of the blood is leffened, and its watry part increafed. Old age again leffens the craffamentum, and the gelatinous part likewife.
§. 169. From thefe principles, (§. 136 to 139.) but with a conjunct confideration of the folid fibres and veffels,* the different temperaments, and morbid conftitutions of people are derived. For a pletboric or fanguine habit arifes from an abundance of the red globules; a phlegmatic temperature is from a redundancy of the watry parts of the blood; a clooleric difpofition
of the humours feems to arife from a greater acrimony and alcalefcence of the blood, as appears from thofe who live on flefh and on the human fpecies, being fo much fiercer and more paffionate than thofe who live on plants or on vegetable food. As for the melancholly, if there is really fuch a humour in the blood, it feems to confift in a redundancy of the earthy principle, §. r69. [With refpect to the folid parts, a greater firmnefs joined with as more exquifite fenfibility or nervous irritability, difpofes to a choleric habit; and a lefs irritability with a moderate denfity, to a fanguine habit; and a leffer degree both of denfity and irritability are to be referred to a phlegmatic temperament. In the melancholly again, a weakneis of the folids is joined with the highert degree of nervous irritation or fenfibility.] But you mult be careful not to make the fe temperaments as the fole and limited fyftems or clafles of conftitutions: which, in the courfe of nature, are found to be not only four, eight, or even thirty-two ; but are really diftinct in numberlefs degrees.

REMARK.

* 'Tis a wife caution of our author not to make any deductions phyfiological or therapeutical, unlefs the conjunct fate of the folids enters the confideration. The quantity or quality of the blood vitiated or offending are not the primary caufes of now difeares, but the effects of a vitiated ftate of the folids, and their actions, by which the blood and all other juices are moulded or compofed, and to the fate of which their quantity and quality are anfwerable: and, for this reaion, all
good profeflors have propofed the confideration of the elaftic moving fibres and veffels, as the neceffary ground-work or foundation to a knowledge and cure of difeares.
§. I70. The red parts of the blood feem chiefly of ufe to generate heat, fince they always abound in proportion to the natural heat of the animal. Thefe being confined by the largenefs of the globules, within the red and firft order of veffels, hinders the collapfion of their extremities; and in receiving the common motion of the heart, by the greater denfity of their parts, they hold the motion longer, or make a greater impetus aud attrition upon the leffer orders of humours, upon-which their motion is impreffed. And hence it is, that the red part of the blood, being too much diminithed by profufe bleedings, there follows a ftagnation or leffened motion of the humours in the fmaller veffels, whence fatnefs, coldnefs, dropfy, \&c. By the fame rule alfo, a due proportion of the faid red blood is neceffary within the habit, to generate and repair new blood for the ufes of the whole fyftem. For, by large hæmorrhages, we fee the blood lofes its red or denfe nature, and degenerates into a pale, ferous or watry fate.
§. 17!. The hardening ferum (§. 157.) is more efpecially defigned for the fecretions and nutritions of the parts, as will be hereafter more apparent (§. 239 to 243.) The thinner juices thence fecreted have various purpofes, as the diffolution of the aliments, the moiftening of the external furface of the body, and furfaces
of the internal cavities, to preferve the flexibility of the folids, and conduce to the motion of the nerves, the fight, \&.c.
§. I72. Therefore bealch cannot fubfint without a denfe and red blood, whofe quantity too much diminifhed caufes a fagnation or flow ropy trailing of the juices within the fmaller veffels; whence cachexy or palenefs, coldnefs, weaknefs; and the like. Nor, on the other hand, can life or its proper offices be carried on, or health fubfift without a fufficiency of thinner juices intermixed with the red blood; which, being deprived of its watry part, congeals and obfructs the fmallent paffages of the veffels, and kindles too great a heat.
§. I73. If it is afked, whether there be any difference betwixt the arterial and venal blood? we anfwer, that fome difference there feems to be; the former, having lately paffed the action of the lungs. But, in experiments, I fcarce find any obfervable difference either in colour, denity, or any other knowh diverfity. For the circulation is very quick, and the venal blood itfelf was but a little before arterial. [However, the arterial blood is apparently of a more bright or fplendid red, and having a greater degree of fluidity and proportion of watry parts, may fo far differ from the venal darker coloured blood. But, in this refpect, it remains that we make further experiments.]
§. 174. From one and the fame mais of blood, driven into the aorta, are generated all the juices or humours of the human body,
which, from their affinity one to another, are reducible to certain claffes following; but the manner or artifice, by which each of them are feparated, ought to be accounted for by the fabric or mechanifm of the glands themfelves.

REMARK.

As the blood runs quicker, and into commixture in the veins, as it comes nearer the heart, fo its particles move more flowly towards a feparation in the arteries, as they get farther from the heart, with a diminifhed impulfe. Thus the motion of the blood in the arterial and venal veffels may be, in general, compared to a body afcending perpendicularly, contrary to the force of gravity, by fome impulfe, and with a momentum or celerity continually leffening; and then returning or defcending with a celerity perpetually increafing : only, in the blood, this retardation and accelaration are neither made uniformly, nor in any certain or regular proportion, with refpect to the diftances from the heart; becaufe the diverfity of ftrength, ramification, convolution, \& c. of the veffels themfelves, in which it moves, are irregular and unlimited.

EECTUREVIII.

Of the fecretions.

§. $175 . \square \mathrm{HE}$ claffes or tribes of humours, which, being depofited or ftrained off from the blood into other veffels, are faid to be fecerned or fecreted, feem reducible to four; of which the fir \neq includes all the vifcid and lymphatic jnices, which, by fire or alcohol vini, turn into a hard coagulum ; although generally in the living animal, they are capable of flying off in form of a vapour, and after death are within the fame veffels compacted into a gelatinous thicknefs. To this clafs belong the vaporous juices of the ventricles of the brain of the pericardium, pleura, peritoneum, vaginal tunic of the teficle, of the amnios, joints, and probably of the womb, with the juice of the ftomach and inteftines, of the renal capfules, and lafly, the lymph itfelf, commonly known and called by that name.
§. 176. The jecond clafs is of thofe juices, which are fome of them exhalable, like the former (§. 175°), but being more fimple and aqueous, are neither to be coagulated by fire, nor by rectified fpirits of wine; and others of which do not exhale, but, being depofited in their refpective excretory ducts, are expelled by fome common outlet, proper to a part of fome gland. To the former of this clafs belong the perfpirable matter of Sanctorius, and M 2
probably
probably the internal peripirable matter of the epithelium and cellular fubitance, with part of the tears and watry humours of the eyes. To the latter of this clafs belong the remaining part of the tears, the faliva and pancreatic juice, that of the renal capfules, and the urine. The fweat feems to be a mixture of the perfpirable matter and the fubcutaneous oil.
§. 177. The third cla/s, differing from both the preceding, includes the vifcid, fluggifh or ropy juices; but fuch as are of a watry difpofition, and not congealable into a jelly, but hardening into a cruft-like or fcaly fubfance, by exhaling their water. Of this fort are all the kinds of mucus in the human body, fpread through all the internal paffages for air, aliments or urine; the cavities of the genital parts, liquor of the proftates and feed, to which add the black humour of the uvea in the eye,
§. 178. The fourth and laft clafs is that of the inflammable juices, which, at their firft formation, are indeed thin and watry, but, by time, ftagnating and exhaling their more watry parts, become a thick, oily, inflammable liniment, often very bitter. To this clafs we refer the bile, ear-wax, febaceous and oily liniment of the fkin, the marrow in the bones, and all the fat of whatever confiftence, or in whatever part feated throughout the human body. And the milk itfelf, fo far as it is bucyraceous and inflammable, belongs to this clafs.

> §. 179. Thofe
§. 179. Thofe who confider, that in the blood are found a coagulating ferum (§. 156.), an exhaling water ($\$.160$.), a fort of vificid mucus (§. I 56.), and laftly, a thick and thin oil ($\S .160$.$) , may thence begin to perceive the$ poffibility of a feparation to be made from the blood of all the foregoing claffes ($\$.175$ to I79.) of humours; in as much as we thus fee their conftituent principles are already in the mafs of blood itfelf. But in what manner it is brought about, that oil is feparated from the blood in one part, a watry liquor in another, or a gummy mucus in a third, is a tafk that ftill remains to be explained, and requires a previous defcription of the fecretory organs themfelves.
§. I80. The albumenous or hardening juices are feparated almoft every where from the arteries themfelves, into continuous excretory canals, without any intermediate organ or machine betwixt them. The proof of this we have from injections of fifh-glue, water, and thin oils, which very readily pais the red arteries, and are poured out like unto fweat into all the cavities of the body (§. I-5.), in which we naturally find the faid ferous varours in form of a coagulable water; nor do the injections in this courfe meet with any intermediate knots, or ftops from any hollow cavities and cells. Finally, the blood itfelf, being fo readily poured out into moft of thefe cavities, without any permanent damage, when its courlo is either much obftructed, retarded or urged with a greater impetus through the arteries,
fhows plainly that there is a fhort and open way betwixt the red blood veffels and thofe excretory, ducts; [whence the yellow ferum difa fers not much from the cruor.]
§. 181. Among thefe juices we reckon the venal lymph, mentioned ($\$.5$ I.) before, which paffes through the valvular pellucid veffels to the thoracic duct. For this feems to be drawn off immediately from the arteries, if we give any credit to the numerous experiments of great anatomifts, which how that red blood, mercury and other liquors pafs from the fanguineous arteries directly into the valvular lymphatic veins themfelves. The credit, both of this fact and the experiments, is alfo further confirmed by the mixture of rednefs and yellownefs, often obfervable in the lymph itfelf; and which, by the microfcope, is a demonftration of the red fanguineous and yellow ferous globules, which pafs and float in the lymph, §. 16 I . and feq.
§. I82. It muft not indeed be denied, that there lymphatic veffels have a fort of peculiar glands to themfelves, into which the faid lymphatics depofite their contained juice, and then convey it away from them again. But then the lymphatic veffels do not arife in thefe glands, with which they only communicate in their paffage. For they arife vifibly enough upon the furface of the lungs, liver and inteftines, and run on for a confderable length before they enter thofe glands,
§. 183 . Thefe glands then feem to contribute fornething peculiar to the lymph and chyle
in their courfe, more than has hitherto been well difcovered. The ftructure of them here follows. They appear, as they are called, conglobate, or of an oblong, olive-like figure, fometimes folitary, but often in clufters, and loofely wrapped up in the cellular fubftance, in which they enjoy a fort of free liberty or floating motion, in moft of the internal parts of the human body, and in many of the external parts. Among the latter we may reckon thofe which, arifing in the face and upper part of the parotid gland, and angle of the lower jaw, defcend along the fide of the neck with the jugular vein; from thence dividing as it were, or receiving troops from the arm, they pafs on in a direct courfe with the fubclavian vein to the arm-pit, where they are moft numerous. Some again are extended as far as the flexure of the elbow or cubitus itfelf; but none appear on the reft of the upper limb, nor upon all the back.
§. 184. In the thorax they defcend in great numbers with the wind-pipe, and along the fides of the pericardium ; others defcend upon the anterior face of the vena cava and pericardium down to the diaphragm. Pofterior lymphatics there are many, encompaffing the windpipe on all fides, and playing round its ramifications, reach to the extremities of the lungs; while thofe in the pofterior mediaftinum ride over the pericardium, and with the thoracic duct extend to the diaphragm.
§. 185. In the abdomen lafly, there are others caled the lumbal lymphatics, which M 4 form
form a confiderable troop in the folding of the groin, from whence extending along with the great blood-veffels in the courfe of the Sartorius mufcles, they vanifn in the ham or bending of the knee. Other lymphatics pafs from this inguinal troop into the pelvis, and continue their courfe upwards through the cellular fubftance, behind the rectum, and along with the large hypogafric blood-veffels. 'There are alfo fmall lymphatic glands of the fame kind, with their refpective troops, feated in the greater and leffer curvature of the fomach, at the origin of the great and little omentum, at the entrance of the porta into the liver, in the courfe of the fplenic blood-veffels near the fpleen, and laftly, through the whole extent of the mefentery and mefocolon.
§. 186. The common fabric of thefe lymphatic glandules is, that they all confift of a firong, external, fmooth membrane, painted with many red blood-veffels; within which is à foft and lax cellular fubftance, but of a fhort extent, betwixt the cells of which run numberlefs fmall blood and lymphatic veffels. As for any folliculus or concavity, mufcular fibres, or duplicate membranes, they are to me unlinown.
§. 187. That there glandules are of fome ufe to the lymph and lymphatic veffels, is certain enough; becaufe we fee no lacteal or lymphatic veffel ever reaches to its infertion, without fire diftributing its branches through one of thefe glands, and receiving reductory branches from thence. The chylous juice, with'
with which thefe glandules are filled in children and other young animals, and the ink-like juice which they contain in the breafts of old people, proves that there is fomething feparated from the blood in thefe glands, and poured into the lymph and chyle, which are here probably expelled into the cellular fpaces of the gland. Their greater magnitude and more perfect ftructure in the younger animals, with the fhrinking and corruption or deftruction of them in adults and old people, perfuade us, that this their fecretion is more perfectly made in the younger animals, and that it perifhes in the older. And no part is oftener fchirrous than thefe; whence it is not probable, that the lymph is in them accelerated. The thymus is of the conglobate kind of thefe glandules, but divided into lobules; but there are found alfo in the groins, arm-pits, and other parts, conglobate glandules of this fort, collected into clufters.
§. 188. Another coagulating juice, which hardens likewife by mineral acids and alcohol, is the albumenous humour of the joints, which mixed with fome fat and medullary oil, makes a moft foft or fmooth liniment, to lubricate the heads of the bones and leffen the friction of the joints. For the feparation of this liniment, certain conglomerate glandules of a peculiar fabric are affigned, which are ufually fo placed in the rough inuofities of the joints, that they fuffer a moderate compreffure, increafing their difcharge, without bruifing, by the motion.
§: 189. There

Of the Secretions.

§. 189. Thefe mucilaginous glandules have a peculiar fabric. The larger of them reft upon the bones with a broad bafis, from whence they are gradually extenuated or acuminated into a ridge, from the thinneft margin in which they depofite their juice by open ducts. They have a good deal of fat intermixed, and are manifefly compofed of leffer bunches. Others ftill fmaller are fcattered about the vaginal capfules of the tendons, and betwixt the dividing fibres of the tendons, which laft feem to be almof of the nature of fimple glandules, turgid with a yellow mucous ferum.
§. 190. The uncoagulable juices of the firft fort ($\S .176$.) are fecreted in the fame manner with thole which harden (§. 175.), to wit, from the exhaling arteries, which arife from the red fanguineous arteries, without any intermediate follicle or cavity betwixt them. Thus the veffels, which pour out the perfpirable matter through the fkin and lacrymal ducts of the firft fort, fuffer a watry or thin gluey injection to tranfude fo readily from the arteries, as leaves no room to doubt of this truth. [And thefe fecretory ducts have alfo a confiderable degree of irritability; whence, by any ftimulus or contact of acrid particles, they difcharge more juice in a given time, than what they diftil in a ftate of health.]
§. 19I. But in the latter falival kind of that clafs, the fecretion is made by means of conglomerate glandules, which the ancients fo called from their clufter-like fabric, and efteemed them almof the only proper glands. There
are compofed of roundifh lobules or clufters (fomewhat like thofe in bunches of grapes, currants, berberies, \&cc.) loofely conjoined together into larger maffes by the yielding cellular fubftance, which, at laft, often forms a denfer coat or covering to the whole, like as we fee in the parotid and maxillary glandules. Through the intervals, betwixt thefe glandular clufters or grape-like bunches, run the arteries and veins, which are here large or confiderable enough. But moft of the conglomerate glandules feparate their juices in fuch a manner from the blood, and from thence, difcharge it fo, that each grape-like portion fends out an excretory duct, which, joining with others of the fame kind, form larger trunks; which, at laft, in the manner of a vein, end in one canal, which conveys the humour, feparated by the gland, to the part for which it is defigned, as the cavity of the mouth, inteltines, furface of the eyes, \&c. There are, indeed, fome of thefe glands in which the faid excretory ducts are either not prefent, or, at leaft, not yet difcovered; as we obferve in the thyreoidal glandules, thofe called capfulæ renales, the thymus, and the pituitary glandules.
§. I92. The acini or kernels of thefe conglomerate glands are each of them circumfrribed and limited by a harder ftratum of the cellular fubftance; by which fubftance they are alfo fubdivided into leffer acinuli, as is evident to the eye, and by the microrope. But it may be queftioned, how does this fubdivifion end? whether or no is every fimple acinus or kernel
hollow in its middle, that, by receiving the humour tranfuding from the arteries into the follicle or cell, it may be fent out thence by the excretory duct? whether or no are we perfuaded to believe fuch a fabric obtains from the fmall hot-like ftones and hydatides bred in thefe glands, with the round fcirrhi that fometimes fill the kidneys? whether is this opinion made probable by the morbid round concretions formed in the liver, fpleen, kidneys, tefticles, and cortex of the brain? or from the bunchlike divifion or appearance, which thofe vifcera have in younger animals? [whether the cellular fubftance, that furrounds the extreme vafcules in all parts, does not communicate by open areolæ or cells, in which a fecreted humour is poured by thefe giandules ?]
§. I93. In fhort, none of thefe arguments appear true or conclufive. For the acini, which are found in the vifcera of brute animals, are component lobules, and not elementary parts; but are large and compounded, for the conveniency of each beaft. The morbid concretions are almoft all of them a fort of placentula formed in the loculi of the cellular fubftance, and take up their feat even in the limbs themfelves, where there is not the leaft room to fufpect any thing of a glandular fabric; and are compofed, as to their matter, of oil, earth and vaporous particles, extravafated into fome of the leaft interftices of the cellular fubftance, where, ftagnating and compreffing the adjacent follicles, they form to themfelves proper membranous unics. On the conerary, the watry
and fluid nature of the juice, fecreted in thefe glands (§. I76.), are arguments that it meets with no arreftment in the feparation, nor places of ftagnation in its way. For all the juices, which reft any time in the warm cavities of the human body, which are full of abforbing veffels, are each of them more or lefs infpiflated, and approach either towards a mucous or an oily difpofition. Moreover, if there were any fuch arreftments, anatomical injections would meet with more difficulty in paffing from the arteries into the excretory ducts of thofe glands; which, under fuch circumfances, would be impervious to thick injections, and thin ones they would exhale into their cellular fabric. Yet we fee that the fuperlative art of great anatomifts has not only conveyed injections, but even thick ones like wax, directly from the arteries of the falival glands, liver, \&ic. into their excretory ducts, and this without filling up any intermediate knot-like cavities, which, according to the foregoing hypothefis (§. 192.), they ought to exhibit.
§. 194. Therefore the acini or kernels of thefe glandules appear compofed merely of arteries and veins (which laft include excretory ducts) divided and fubdivided, parted and connected by the intervention of a good deal of cellular fubftance, whofe frrata growing gradually more compact or firm as they enlarge, at length fhow their contents moulded into a fort of globular nut-like figure. In the belief of this, we are confirmed by analogy in the lobes of the lungs, the lobules of the thymus, and
from the ftructure of infects, but more efpecially the fabric of the tefticle, in which we plainly fee, that lobules are formed of excretory ducts, connected together in fafciculi by a very foft cellular membrane. [But they feem not to pour their juices into a cellular fabric, which would intercept or make difficult the paffage to an excretory duct.]
§. 195. Thin watry juices, neither coagulable nor wholly evaporating, are likewife in other parts generated without the affiftance of conglomerate or kernelly glandules. For thus the urine is depofited from the red or fanguineous arteries into membranous pipes, with which they are manifeftly continuous, and form an eafy way, admitting air, water, and mercury to pafs in like manner. And after the fame manner, though lefs evidently, the nervous juice feems to be feparated in the brain.
§. s. 9 . The third clafs, or mucous juices (§. 177.) are indeed almoft every where feparated into, and difcharged from finufles or hollow glands. Thefe true glands or follicles have, in general; fuch a fabric as makes up an ample cavity, every way circumferibed by a membrane; but in fuch a manner, that the flem itfelf of the part, to which the gland adheres, is often taken for another clofe hemifphere of the follicle. The faid cavity or follicle is for the generality round, but fometimes it is oblong, and obliquely creeping betwixt the adjacent parts; as for example, in the urethra of the male, and in the follicles of the finus muliebris.
§. 197. Into
§. 197. Into thefe follicles or cells the leaft arteries (or the vafcular flefh furrounding each crypta or cell, and compleating its convexity) open by producted extremities within the cavity of each crypta, into which they diftil or exhale their refpective juice, where, being retained from the narrownefs of the excretory duct, the more watry parts are drawn up by the abforbing veins, which correfpond to, and refemble the exhaling arteries; and thus the follicular or cryptal juices receive a confiderable degree of thicknefs. The truth of this we are taught from the ftructure of the fimple follicles, obfervable in the tongue, in which both the importing arterial ducts or pores, and likewife the excretory mouth, are vifible to the eye; and from the velvet-like tubuli lining the ftomach of birds, quadrupedes and mankind, in each of which an importing fmall artery, a reductory vein, and an excretory canal, appears to open pendulous in the cavity; and laftly, from injections, which difcharge a colourlefs wax into the fimple glands.
§. 198. Whether the mucous cavity of fuch a glandule be long or round, it has always an excretory duct, which, for the moft part, is none of the leaft ; although, in the round mucous glandules, the difcharging duct or orifice be lefs, in refpect to the referving cavity, than in others. This difcharging orifice often opens into the common large cavity, into which the mucus is to be poured, without any intermediate duct ; for thus it is in the back of the tongue, and in the fimple glands of the ftomach and inteltines,
inteftines, where they have been denominàted cryptæ or cells by Ruyfch. The finuffes have often the like fabric, opening without an intervening duct, as in the urethra of the male.
§. 199. Another kind of thefe mucous glandules are thofe, which we commonly call congluitinated; where many fimple follicles are folded up together in one common covering, and open with their gaping orifices into one common finus, without forming any true excretory duct. This fabric we obferve in the tonfils.
§. 200. Other fimple glands of this clafs have an excretory duct, by which they expel their mucus, namely, a narrow, membranous; cylindric, fmall veffel, opening with its pofterior orifice into the cavity of the glandule, and with its anterior orifice into the common cavity, for which its mucus is defigned. Thefe excretory ducts are of confiderable length in the fubcutaneous and febaceous glands, and in thofe of the palate and wind-pipe. In fome parts alfo, the pore or orifice, and its duct, are more eafily demonftrable, than the follicle or body of the gland itfelf; as in the nofrils, larynx, rectum, \&c.
§. 201. In others again, an affemblage of thefe ducts, arifing each from its refpective follicle, run together into one like the branches of a vein, fo as to form a confiderable excretory canal, common to a number of follicles. To this kind belong the compound mucous glands of the inteftines, fome of the larger in the cavity of the urethra, with the blind or impervious duct or finus at the root of the
$t_{\text {ongue, }}$ to which, in brutes and birds, add the fringe-like tubuli of the ftomach. The glands of this fort may be called fimple ones compounded or continuous; but where they lie only contiguous one to another, they may be called fimp.e argregate or congregated glandules; as are thofe of the fauces, ftomach, inteftines, \&c.
§. 202. The inflammable juices (§. 178.) are feparated by organs differing in their fabric. The fat and marrow are depofited, without the intervention of glands, from the fmall mouths of the leaft arteries into the cellular coat or rather fubftance; and the fame fat again efcapes from under the 1 kin by fmall pores or ducts, without the affiftance of any glandular follicles. But the ear-wax, and the waxen or fewety liniment of the fkin, are feparated by glands of divers kinds. Moft of the febaceous glandules are vifible enough, with an open or naked mouth in the fkin, that leads immediately into the follicle, without any duct of confiderable length; as we fee in the external ears, nofe, rings about the nipples, in the female nymphæ, and the valley or groove that runs betwixt them and the external labia, in the ciitoris and in the male glans and propuce. Thefe differ but little from the cryptr (§. 187.) except in their contained matter, which they feparate.
§. 203. There are others of the febaceous glands, which have an excretory duct of a coniderable length, like moft of thofe in the kkin, which, being feated in the cellular fubftance, have confequently a duct long encugh
to perforate the fkin. Thus we fee it is in the face more evidently, where the length of the duct is often to be meafured by the concreted maggot-like fubftance preffed out; the bulk of which demonftrates, that a follicle or cell lies under the narrower pore.
§. 204. There are fill other febaceous glands of the continous or conglomerate kind (§. 20I.) in which many crypte by fmall ducts meet together in one larger excretory duct. Thus in the face, in feveral places, there are large pores in common to a number of fubjacent cryptr. And of this kind are thofe febaceous links or little inteftines in the eye-lids: and thus it is in the organ which feparates the febaceous perfume in the febaceous glandules of the mufk-goat of America.
§. 205. The milk, being a humour of its own particular kind, formed of oil and watry juices intermixed, is feparated by conglomerated glandules, whofe fabric we defrribed at §. 191. Whether the fecretion of the bile be glandular, is controverted; but there are many arguments to perfuade us, that the liver is a mere vafcular fabric, whence the bile diftils immediately from the extremities of the porta into the pori biliarii or roots of the biliary ducts, without paffing any cells or follicles by the way; and in this we are more efpecially confirmed by the Ruyfchian art of injection, in which the wax paffes directly from the porta into the biliary ducts, without exhibiting any intermediate knots or ftoppages; and therefore we fee the milk and bile are both of them much
thinner and more watry than the fat, or the febaceous matter, which thicken in follicles.
§. 206. It now remains for us to enquire, how from one common mafs of the blood, the fame variety of peculiar juices are conftantly feparated, each in their refpective places; fo that we never fee milk fecreted in the kidneys, bile in the thymus, or mucus in the febaceous glandules. This problem, indeed, may be folved by one, who fhall have previoufly acquired a thorough knowledge of the intrinfic fabric, that obtains in each fecretory organ. In the mean time, we fhall here propofe what has been hitherto advanced with certainty on that fubject from any known principles, whofe truth we are convinced of.
§. 207. And firft, the blood itfelf, from whence the humour is to be fecreted, undergoes a fort of hygraulic preparation in the various parts, by which it puts on fuch a character or difpofition there peculiar to itfelf, that more particles of a like nature with the humour abound in that blood, which nature intends to feparate from it. In the liver, the venal blood arrives with a very flow motion, full of oil, and full of the femiputrid vapours of the inteftines. At the tefticles, the blood is brought flowly through very long flender and inflected canals, arifing at very fmall angles, and paffing out of the abdomen through a cold tract under the fkin. In the carotids, it is probable that the denfer parts of the blood afcend, while whatever is more watry defcends into the abdomen and to the kidneys; alfo to
the forming of the falival juice of the pancreas, liquor of the ftomach and inteftines.
§. $20^{\text {? }}$. Another preparation of the blood towards fecretion, is from its retardation in the leaft veffels: whereby the red and denfer parts go on by themfelves along the axis of the canal, while the other lighter and more fluggifh, or vifcid and lefs moving particles, recede to the lateral opening or branches, fo as to enter the fecretory orifices, which pafs out from the fides of the faid veffels.
§. 209. The lights of thefe lateral or fecretory orifices, though of different diameters in different parts, are yet always fmall enough, in their healthy and natural ftate, to refufe the red blood. Hence, therefore, we may conclude, that, being enlarged by an increafed force of the heart, they every where admit a good deal of the red blood from the fanguineous artery, which they arife from, and open into ; being in their natural fate not much lefs than the red globules. And hence the fame fecretory orifices or ducts, which refufe thick mjections of wax or fewet, do, neverthelefs, generally admit thinner liquors injected into the arteries. Therefore this is the firft and moft fimple mechanilim, or machine of fecretion; viz. that the light or opening of the excretory duct may admit only fuch particles as have their greateft diameter lefs than the diameter of the faid opening. From this reafon only, it is, that the yellow arteries convey off a pure liquor from the blood, and that the uriniferous ducts exclude both the red blood and coagulable ferum.
ferum. [But this is not the fole caufe, fince the fame juices are generated by large as by fmall animals.]
§. 210 . Merely by this law, (of the fecerning orifices) the fecreted juices may be of many different forts: for thofe, whofe lights or tranverfe fections are the leaft, will receive only the thinneft juices, as in the fmall veffels of the brain; and the larger ducts will admit water and jelly, while the thickeft fat will enter the biggeft of all. Moreover, if a number of fecretory organs are formed in a fucceffion from one fecerning artery, each of them having large mouths or ducts; in that cafe, the laft, which come out from the faid artery, will receive only the thinneft juices. But if thofe, which are firft formed in order from the fecerning artery, have fmaller ducts, then the laft only will receive the groffert juices.
§. 211 . From hence it is, that the fecretions, which are generally made immediately from fanguineous arteries, without paffing the ferous lateral ones, (§. 44.) are all of grofs juices, thick, coagulable or watry; as the fat, urine, juice of the ftomach and inteftines, \&xc. But the other thinner juices are (3.) fecreted not from fanguineous, but from fmaller pellucid arteries arifing from the former. To the fecerning mouths, therefore, of thefe laft not only no red blood, but no ferum, fat or other grofs juices can have admittance. Thus the more thin and pure humours are feparated of confequence; as for example, in the eyes, cortex of the brain, \&c.
§. 212. Some fhare of the fecretion ought, perhaps, to be allowed (4.) to the angle, which the fecretory branch intercepts with its trunk. For it is eafily demonftrated, that at right and retrograde angles, only the vifcid and fluggifh juices are expelled by the fronger force of the denfer particles, which hold on their courfe along the middle of the artery; whilft the denfer go off at half right angles. For thofe who have made the trueft obfervations on living animals, have feen, that the velocity of the blood is greateft in veffels of the acuteft angles, and lefs in thofe of right angles. That the effect of thefe angles in the veffels is confiderable, with regard to the fecretion, we are perfuaded from the frructure of them in fever ral parts of the body, fince they form different angles in different parts, with refpect to their trunks ; and in fome parts compofe net-works, For the fmall veffels, in general, refemble the branchings of little trees or fhrubs, the trunks and arms of them every way fending out fmal ler branches, but in different angles; at fmall angles, for inftance, in the large inteftines, and at larger angles in the fmaller inteftines. Thus in the fleen, the fmall red arteries arife fo thick from their trunks, that they refemble a wifk or fininkler; in the inteftines, they refemble pencil bruhhes, vermicular arches in the kidneys, fars in the liver, a radiated circle in the uvea, and in the tefticle, a lock of hair curled up into a button. But we defervedly receive it as a rule, that the creator never made
this diverfity of fabric, without its proper ufe and effects.
§. 213 . And (5.) the inflexions of the fma'ler veffels greatly retard the motion of the blood, in which, therefore, the greater part of the force received from the heart, is evidently - fpent in changing the figure of the veffels. The repeated inflexions, therefore, of the fecretory arteries increafe the vifcidity of the juice, by delaying the flux, and giving the parts more time to cohere or attract each other. But a ftrait courfe of the veffels increafes the celerity of their fluid, whence a copious and eafy fecretion; but then it makes the fecretion more un-uniform or impure, as we fee in the urine.
§. 214. That the fmaller arteries have (6.) different degrees of denfity or firmnefs, there is no reafon to doubt; fince we actually find it fo by experiments in the larger branches. But the denfer the capillary arteries, the more they refift the light and flowly moving particles, and yield only to the more denfe ones, that have a greater impetus.
§. 21 5. And laftly, (7.) the velocity is greatly increafed, when the excretory duct arifes a good deal before the extremity of a larger arterial branch that ends with a fhort courfe; and is equally diminifhed, when the fmall fecretory artery runs a long way capillary and cylindrical, whereby the blood lofes the greater part of its motion in friction. Finally, from whatever caufe the divernty of the blood's motion may arife, a greater velocity of it caufes the fecreted juices to be more denfe or

$$
\mathrm{N}_{4} \quad \text { heavy, }
$$

heavy, more groifs and un-uniform or impure: but llownefs of its motion increafes the attraction and vifcidity, and probably renders the fecreted juice more pure and homogeneous, as the fimilar particles, thus forted and brought together, can better attract and join each other under a flow motion, fo as to retain the larger canal, while the thinner parts go off by the leffer lateral branches. From hence it is, that only the impulfe of the heart being too much increafed, all the fecretions are confufed.
§: 216. From all that has been hitherto advanced, we may now begin to perceive, that, fince the blood contains particles of various kinds, fome fluggifh or ropy, others mucous, others coagulable; fome, again, very fluid, others more denfe and red, fome glutinous, fome watry and thin, others fat and grofs (§. 175 and feq.): among all there particles, thofe, which are the largeft and moft denfe, as the red and yellow globules, will go on moft towards the axis of the veffel, fo as to pafs on in a continued courfe from the artery into the trunk of the fanguineous vein, §. 37 .
\$. 217. Thofe particles, which are ramous, grofs and nuggin, as the fat, muft needs go off laterally by larger orifices from the fanguineous aitery, by fhort ducts; for long ducts would make a fop to fo fluggifh a juice, as the fat or oil. Therefore we fee, that the circumflances or phenomena of the adipofe fecretion (§.20.) agree with this defcription. Such parts as are coagulable, but feccifically heavier than thofe which are merely watry, kept fluid only
only while the powers of life are in action; there pafs off laterally from the fanguineous, into the pellucid arteries, lefs than the red arteries, with which they are continuous; whether thefe pellucid ones are continued on in the nature of trunks, fending off other fmaller branches, like the leaft arteries ($\$.40$.) ; or whether they exhale their contents by a hort extremity, like the veffels of $\S .170$.
§. 2.I8. Thin watry juices may evidently pafs off by any veffels continous with the fangineous ones or the leffer ones (§.44.), provided they be only fmall enough to refufe the groffer juices: and this whether they come out from the fides of the larger arteries, or whether by a long continued courfe, and fending off all the groffer juices by large lateral branches, they, at length, end in a fmaller pellucid canal inftead of a trunk, like that which fupplies the clear contents of the eye. To the production of thefe juices, the moft fimple fabric is fufficient : even a direct continuation of the fecretory artery itfelf into an excretory duct, as we fee in the urine. Therefore the ducts and veffels have here a ftraight and fimple courfe, with few or no inflexions, and a proportionable velocity or celerity, as yet holds in the courfe of their contained juices.
§. 219. Such juices, as being watry, light, mucous and vifcid at the fame time, are confequently fluggifh and lefs moveable; there may be eafily fecreted by fhort narrow ducts of a lefs diameter than to admit the fat, and appended to the fanguineous arteries; and, there-
therefore, it is evident, there will be feparated from the blood more abundantly in fome parts of the body than others, namely, where the velocity, received from the heart's impulfe, is lefs, the flexures of the artery more frequent, and where the extent of the capillary artery fhall be carried to a greater length.
§.220. Whether or no ought we to afcribe to each particular part the ferments, pores, fpecific weights, or filters, which determine the nature of the humours to be generated? one, who admits of thefe, ought to confider the great difference there is in one and the fame juice, feparated in the fame part of the body, according to the difference of age, courfe of life, \&uc. The bile in a fætus is generated fweet, the femen thin and without vermicles, the milk either none or very watry, the urine watry, mucous and infipid, the uterine mucus very white, the cutaneous veffels full of red juices, the lymphatic or watry juices redifh, and the fat gelatinous. By the fame organs, in an adult perfon, the bile feparated is fharp or acrid, the femen thick, the milk fweet or oily, the urine yellow, thin and alcalefcent, the womb difcharges a menftrual blood, and lymphatic aqueous humours are moft clear. But, even in the adult perfon, how different is the urine; at one time watry, at another thick or concocted, in a fever high coloured and heavier, full of falts and oils. The paffions of the mind, which make no other change in the body than that of frictures in the nerves, yet wonderfully change the face of the fecretions, and expel even
the blood and bile through the veffels of the ikin. Add to this the frequent difturbance of the fecretions, and changes to which they are liable from flight caufes; fo that only an increafed celerity fhall caufe feveral differing liquors to be fecreted by one and the fame organ : for ferum and blood have been known to pafs into almoft all the paffages of the fecreted juices, into thofe of the fweat, tears, mucus of the noftrils and of the womb, and into the lactiferous, feminal and urinary ducts, as well as the fat. A true milk has been feen feparated by glands in the thigh. When the urine has not been excreted by its natural courfe through fome defect of the kidneys, ureters or bladder, it has paffed by the fkin, exhaled into the ventricles of the brain, or even into the whole cellular fabric. The perfpirable matter of Sanctorius, however thin, is often by cold drove through the nofe or kidneys, or by the fame caufe, by fear, or by medicines, is depofited through the excretory villi of the inteftines. That exhaling vifcid juice, fecreted by the fame organ with the fat, from which it fo much differs, into the cellular fubftance, is depofited, takes place of the fat, is re-abforbed and alternates again with the fame, §. 20 , \&co A falivation fupplies the place of the Sanctorian or cutaneous exhalation externally, and of the cuticular exhalation internally. The bile reabforbed appears evidently flowing in the veffels of the eyes. Nor does there appear any thing in the fabric of any of the vifcera or glandules that can fix or maintain the nature
of the fecerned fluid; but that a greater or lefs velocity, or a ftricture of the nerves, fhall produce differently changed juices in the entire organs.
§.221. It now remains for us to difcover, how the fecretions, in a healthy perfon, become pure or uniform. For all the juices, that have been lately fecreted, (without excepting any, even the oil or fat itfelf) have a great many watry particles intermixed; fo that none of the thicker juices feem capable of being formed without having a mixture of the thinner watry ones; how then do the femen, bile, fat, mucus, and other thick juices depofite their firft watry ftate, and acquire their proper vifcid condition and other qualities?
§.222. For this end, therefore, nature has framed glands, with large and fmall follicles or refervoirs, for retaining the fecerned juices, from which the watry parts are required to be feparated, to render the remaining part more ftrong and vifcid. The mucus, at its firf depofition, is thin and watry as yet, but little differing from the perfpirable vapours or tears, in which fate it diftils into the cavity of the noftrils, wind-pipe, and inteftines. This is not continually difcharging, becaufe the excretory orifice is lefs than the retaining cell or follicle, §. 189. and the excretory duct, being fometimes long and flender, fo retards the juice that it cannot pafs out but by the affiftance of a preflure, or often, perhaps, not without a fort of nervous fphincter at its orifice, be from the irritating quantity or acrimony of the juice relayed
relaxed. This appears from the morning difcharges of mucus by blowing the nofe, coughing up from the lungs, and by fneezing after the nocturnal ftagnation. In the mean time, the patulent veins, extended into the cavity of the follicle, abforb the more aqueous parts from the thin mucus, that it may become thicker, as it is retained longer; but if, by the force of fome fimulus, it be directly difcharged after it is fecreted, it comes out thin and watry. Examples of this we have in the urethra, in the noftrils and in the ear-wax; as alfo in the bile, which, at its firft feparation in the liver, is watry, and has but little yellownefs or bitternefs. It is, therefore, retained by a large follicle or gall-bladder, and there digefted or exalted by the vital heat, and its more thin or watry parts exhaled or abforbed by the veins ; whence the remainder becomes more thick, bitter and oily, or faponaceous. The fame mechanifm takes place in the femen, which, being referved in the feminal veficle, is there thickened, fo as to be very vifcid after long chaftity; but in repeated venery 'tis expelled very fluid. In fome places nature has made this receptacle two or three times folded together in one and the fame organ, when her defign was to form a very thick juice. Thus the feminal paffage is in the tefticles reticular, in the end of the epididimis one large canal, ending in a larger veficle; whence the veffels at the tefticle are narrow, and fo again are the vas deferens with the proftatic duet.

$$
\text { S. } 223 .
$$

$\$.223$. Hence, therefore, there are never any glandules placed in a part, but for the feparation of a vifcid juice; or if a vifcid liquor is any where feparated from the arteries without a glandular or follicular fabric intervening, it then always ftagnates in fome larger veficle or cavity, of which we have examples in the feed, bile, fynovia of the joints, and in the fat.
§. 224. A fecerned juice may be likewife changed in its receptacle by irroration or the affufion of fome new liquor. Thus the femen thickens by an affufion of the proftatic liquor, the chyle is thinned by mixture with the faliva and pancreatic juice, and that which diftils from the villi of the fomach and inteftines, and by an affufion of the bile it becomes alcalefcent; and again the fynovia or albumen of the joints is tempered by fat and medullary oil, §. 188.
§. 225 . But the great ufe of the follicles and receptacles of glands is to preferve the juice, of whatever kind it be, for thofe times in which it is moft neceffary to be employed in the actions of life. Thus the bile is referved for the time of digefion, the femen for due and lawful venery, and the mucus of the nofe is accumulated in the night to temperate the force of the refluent air in the day.
§. 226. Therefore as nature has in this way framed machines, by which the juices are retarded in the large and fmall follicles, fo the has made others to expel them at fuch convenient times. To fome glands the has given particular
cular mufcles for this ufe, as in the tefticles of brutes, the urinary bladder and the gall-bladder ; or elfe the has placed other mufcular machines round them, which, by acting at convenient times, expel the contained fluids; as for example, in the mufcular coat of the ftomach and inteftines. In other parts the has added contiguous and incumbent mufcles to promote the difcharge, as in the biventers and maffeters of the lower jaw; or elfe the has again joined to them a kind of nervous irritability, which, being excited to action by an unavoidable ftimulus, opens the thut paffages to the milk, feed, tears, \&c.
§. 227. The feveral particular juices, which are derived from the blood, we fhall defcribe more accurately, under their refpective organs. But before we defcend to the particular fecretions, it was neceffary for us firft to fpeak of fecretion in general, and efpecially of that univerfal one, which is made of the nutritious ferum or lymph through all parts of the body; thus we may next proceed to the appofition or accretion of it, to fupply the deficiency of fuch parts as are daily wafting in the human body.

LECTUREVIII.

Of nutrition.

§. 228. HE human body is made up of folids and fluids (§. I.), of which the latter appear to be in much the greater proportion, if we confider their crigin from a fluid nourifhment, the great quantity of the blood (§. 167.), the proportion of the lights of the veffels to their fluid contents, the filling of the veffels by waxen injections, the fmall weight or bulk to which the body is often reduced by difeafes, by putrefaction or a chemical diftillation, or by an exhalation of what is more fluid.
§. 229. That the fluids are perpetually wafting is eafily demonftated. Thofe which are watry, are the moft readily thrown out of the body. The Sanctorian perfpiration, with that of the lungs, often amounts to three and four pounds per diem. But even the thicker coagulable juices are perpetually diffolved by the healthy human heat, equal to 96 degrees, joined with the attrition of the globules among themfelves, and againft the fides of the arteries (\$. I48.) ; 'till being fufficiently volatilized, they, at length, fly off or efcape. Even the urine is neither wholly a watry liquor, nor compofed merely of the recrementitious parts of our aliments, but is in pare formed of our worn-out humours, fince it is found alcalefcent
and replete with the fame kind of oil, earth, fixed air, and fpirit, which the blood itfelf contains. Part of the bile alfo and of the inteftinal juices are daily excluded by frool, to the quantity of fome ounces. A further proof of this wafte in the fluids, we have from the leannefs and collapfion of the body that follows great exercife, fevers, the force of purgatives, \&c.
§. 230. But the fluids are not the only parts of the body which wafte, for the folids likewife are daily confumed by their perpetual actions in life. This is eafily proved from the wafting caufes themfelves; for the blood, being thrown with great impulfe by the heart into the convexities of the crooked veffels, extends them in all their dimenfions, both as to length and breadth; foon after which, the ftraightened veffels return by their elafticity again into their wrinkled or vermicular pofitions; and this change they fuffer an hundred thoufand times in a day, by a force fufficient to grind even wood or metals: fuch a friction muft, therefore, of courfe confume the loofely cohering parts of our body, made up of a friable earth and glue (lect. I.), eafily refolvable by fire or putrefaction. This friction happens in all the veffels, but is more efpecially enormous in the leaft veffels; while the fibres are extended in length, the intermediate glue likewife, by the extenfion, lofes of its attractive force, and if the diftending or impelling force does but a little exceed that of attraction, the glue mut be expelled from the intervals betwist the 0
earthy
earthy elements. This is confirmed by raptures of the membranes of the aorta in old people.
§. 23 I . That there is a diffolution of parts in the extreme cut off, exhaling veffels, both external and internal, made by the force of the blood and juices, is demonftrable from the loofe and free opening of the laft elements of the fibres, only one of which adheres to the remaining part of each canal. From hence comes the fcurf or fordes made by a confumption of the cuticle, the quick growth of the hair and nails, with the increafe of the teeth, which is none of the floweft.
§. 232. That the cellular fabric of the veffels is wore away not only within their cavities, but Iikewife on all fides without, will eafily appear from conftdering the very weak cohefion of this fubftance, fo eafly diffolvable by maceration only, with the violent attrition it fuffers betwixt the impelled blood and the adjacent mufcles, tendons, and contiguous bones. The circumjacent fat, indeed, abates this attrition, but does not wholly remove it.
§. 233. The cellular tiffue or web-like fubftance, which makes the folid ftratum or bafis of the membranes and vifcera, muft neceffarily diffolve and return into the ftate of a fluid, through an abrafion of fragments, made by the vibrations of the arteries, which are always annexed to it in every part of the body. The fame diffolving effects likewife have the violent and almoft inceffant motions of the mufcles, which, by the repeated flexions and extenfions
of their fibres; muft operate thus in a very confiderable degree: for the nature of things, in general, demonftrate this, fince nothing more powerfully foftens or diff lives the hardeft bodies than a repeated and ftrong fleyares of their parts; whence of courfe the fame power will have the fame effect in diffolving our cellular fubftance, compofed but of foft fibres, lately made out of a gelatinous glue: and fo far from folidity, that it contains many intermediate vacuities; with a diftinct feparation of its thin parts by intervening fluids, §. 10
§. 234. Even the firminefs of the bones themfelves does not fecure them from a flow diffolutions and a perpetual renovation; for that new ftamina are formed in the hardeft bones is evident from the morbid protuberances of the teeth in fcorbutic patients; from the inflexions or cuirvatures of the fibes of the teeth tound frall leaden flot; and lardy, from the wonderful óvergrowing or Cprouting of thofé teeth obferved both in bsutés and men, which have long loft their oppofites. Laftly, that the offific juice or matter changes; and that the old carried off is fucceeded or replaced by new matter, appears plainly from the degeneration of found hard bones into the foftnefs and confiftence of flefh; from the venereal tophi or excreicences formed by a corrupt offific juice, with the incurvation of the bones, that fupervenes an acrimonious or vitiated fate of the juices; and from the removal or cure of thefe by internal medicines: add to thefe, the red coo
lour that is introduced into the fubftance of the bones by giving madder with the food of animals, and the diffipation thereof, or reftitution of the bones to their natural colour again by changing their diet. Lafly, that the bones of old péople truly wafte or decay, is confirmed by the experiences of many able anatomifts.
§. 235. Hence, therefore, 'tis evident the whole living body is in a perpetual flate of fluxion, confumption and renovation. The juices we fee are fufed, exhaled and expelled. The folids are broke and diffolved into the leaft fcales and ftamina, which, being taken up by the mouths of the inhaling veffels, and tranfmitted through the larger into the mafs of blood, afford that earthy matter obfervable in the urine and in the fubftance of calculi, and proternatural offifications formed in divers parts. This confumption is largeft in youth, where all the parts are fofter, and the impulfe greater, the watry and gelatinous principles more abundant than the earthy. This wafte grows lefs with age, but 'tis always confiderable.
§. 236. There was, therefore, a neceffity in nature to provide for this confumption of parts. In what manner the fluid parts are repaired will be eafily demonftrable, if you conGider from what we fhall fay on the digeftive powers, that they fend a chyle like milk from the aliments into the blood, replete with a thin butyraceous oil, and a liquid vegetable or animal jelly. So the globular juices arife out of naturally
the oily or fat particles, naturally of a globular figure and of a loofer lighter texture than water, by the condenfing powers, viz. the contraction or preffure of the arteries, and the intrinfic attractive force that prevails in the leaft veffels, where the globules are divided by very little water; and laftly, by the figurative power in the lights or fections of the leaft veffels, whereby they become denfe globules of a certain diameter.

R E M A R K.

Fat or oil, both animal and vegetable, by triture with water, turns into jelly, and that again, by fpontaneous reft and feceffion of parts, turns into oil ; fo that refins, by triture with alcaline falts and water, return to gums, and gums, by digettion, in plants with age, turn into refins. In like manner are animal fat or oil and jelly commutable one into the other. Though we canot think the fat, under its intrinfic oily character, can make an organic part, either folid or fluid, even the moft fimple, as fibres and elaftic globules, until it has acquired the elaftic ropy property of lymphatic glue, by repeated mixture, triture, \&cc. So fat or oil muft affume the nature of elaftic glue before it can form organic globules, however loofe, light or minute. Such light loofe globules are abundantly fupplied, and are ready formed with a nutritious jelly in moft vegetable fubftances, efpecially fermented, as all pulfe, bread, beer, wine, foops, \&c. which globular matter, we know by the microfcope, not only abounds in the nourifhment itfelf, but in the chyle formed thence; fo the globular juices of fifh, flefh, milk, wine, beer, \&c. lefs than red blood globules, may enter with the chyle, by the inhaling or abforbing veffels in the inceftines, and by the abovefaid forces be compacted
into red, ferous, and other globules. So likewife, as our author juftly obferves, fat or oil, being qualified or granulated, as it were, by the action of bile and other faponaccous juices, may, like the refin of plaris, be reduced and ground into gelatinous elaftic giobules, ftill retaining fo much of their oily nature as to be inflammable. Thus the fat, in confumprive people, turns again into blood and nourifhment; and the redundant blood or nourifhment from a ceafing of the menfes at 50 , or after other great excretions ftopped, eurn into fat, or elfe give birth to difempers.
§. 27. That red globules may be formed out of fat appears from their inflammable nature, §. 165° and that they may be formed of the condenfed globules in the chyle is evident from the ufe of milk, as the beft and mont immediate matter for making blood in the fœetus, and children, confirmed by the experiments of Lewenhoeck, who obferved the globules of chyle to be larger and loofer or lighter than thofe of blood: and experience demonftrates the fame, by which we know the chyle fwims and circulates in the blood very diftinet, both as to form and colour, for forne (10 or 12) hours after a meal ; but after a longer time, it difappears, and is found of a nature uniform to the blood itfelf; whence there is evidently a neceffity for the chyle to change into the other animal humours.
§. 238. To form a coagulable lymph from blood then can be no great difficulty. For this we already have, long before, perfect in the flefh of animals, as in mutton; fo that for this Where is no other action required from our bo-
dies, but to extract the ready formed lymph from the folid fibres and veffels, and tranfmit it thence to mix with our blood. And hence it is, that animal food affords the ftrongeft and moft durable nourifhment, and the moft immediate recruit to the feveral actions or forces. In vegetables, indeed, there is inherent a lefs quantity of the like, vifcid, gelatinous nourifhment; and therefore they nourifh lefs. Yet, that vegetables already abound with fuch a glutinous jelly, as may merely, by the animal powers, be changed into coagulable lymph, is evident in herbivorous game and cattle, moft of which, feeding only on plants, make thence the beft glutinous lymph: and laftly, from the vifcid nature of farinaceous vegetables themfelves, being mixed with water, and from the nature of moft juices obtained from plants.
§. 239. But that the other humours of the human body are generated of lymph, we are perfuaded from the example of the young of incubated eggs, which are altogether compleatly formed, both folid and fluid parts, out of the albumen compacted; which is again confirmed and illuftrated by the change of the lymph into an evaporable water, by a heat of 96 or 100 degrees, which watry lymph is then fubalcaline; fuch as is the perfpirable matter of all kinds.
§. 240 . Nor is it very difficult to explain in what manner the wafting folid parts are repaired. For the lymph is vifcid, and readily adheres or concretes into a folid, as we fee, for inftance, in the formation of polypulfes: and,

04
by repeated concuffions, (as with a whifk, \&cc.) the ferous gluten, by removing the watry part, is readily drove together into a mafs, §. I 57. Therefore the foveolæ or little vacuities in the veffels or fibres, made by an abrafion or demolition of the earthy glutinous elements, are filled up by the lymph itfelf, compacted by the impulfe of the blood, into which vacuities, being once received, it coheres partly by a broad furface to the other folids, and is in part figured, compacted and agglutinated by the impulfe of the arterial juices driving againft the circumference. [A great portion of this additional matter feems to be air abforbed and conveyed hither by the circulating fluids, and fixed into a folid with a greater proportion of earth, glue and water; fince no diffolution enfues, unlefs the incorporated air be extricated, and fet at liberty in elaftic fpherules.]
§. 24 I . As for the decreafe or wafte that is fuffered in the extremities of the free pervious weffels and fibres, that feems to be reftored by mere protufion, while the place of the decreafed extremity is filled up by a production or elongation of the next continuous fibre. Thus intervals or vacuities are produced betwixt the protracted fibres, which are filled by new lymphatic glue.
§. 242. The wafted matter of the cellular fubftance is reftored by the lymphatic dew itfelf, which tranfudes through it (§.20.) ; for this being poured out wherever there is any wafte or vacuities made in the fibres and plates of the faid fubftance, being coagulable, it is, by
the feceffion of its watry parts, joined with the preffure of the adjacent mufcles and impulfions of the arteries, compacted together and changed into cellular fubftance. This is made clear from the change of vegetable juices firft into a pulp, and then into a true cellular fabric; and from the morbid connecting filaments, which arife in the thorax or pleura from the lymphatic tranfuding vapours, \& c. [A fuppuration, and the converfion of vegetable juices firft into a pulp, and then into a cellular fubftance prove the fame.]
§. 243. In what manner the mufcular and tendinous fibres are nourifhed, may be then more rightly explained, when we fhall have a more perfect knowledge of their fabric. Yet it appears from a comparifon of the foft pulpy mufcles in a fætus, almoft in every point flefhy, with the tendinous and but little flefhy mufcles of an adult perfon, and from the great abundance of the minute veffels playing round all the mufcular fibres; I fay, from thence a mufcular fibre feems to be nourifhed by a lymphatic dew, poured out into the cellular fabric that furrounds the fibre, with which it joins into cohefion by the mufcular and arterial preffure.
§. 244. As the fabric of the bones is better known to us, fo the rationale of their nutrition is more eafy than the foft parts. They are compofed at firft of membranous fibres, which by degrees harden, while an offifying glue is thrown into the faces betwist the fibres. This offific juice is demonftrated from its filling the fiffures that run betwixt the bony plates
in a feetus; which in the adult become exorbie tant knots of bone; from the inorganic fony cruft, that is often formed round the bones; and from the frequent anchylofes, that are formed by the tranfuding of a confufed bony matter coagulated betwixt any two bones: we have inftances even where the whole hollow tubes of the larger bones have been. filled by a redundancy of this offific juice. But that the faid juice is a true animal glue, of the fame nature with the coagulable lymyh, appears from the jellies that are drawn out by fire from bones, horns, ivory, \&c. fo thic or vifcid that they will make more than five times their bulk of water confiftent, while the remains of the bone, from whence the jelly was drawn, are left very brittle or friable: but the fame glue or jelly of the bones is allo refolved by putrefaction, and then, like the lymph, it becomes wholly volatile, as we know from undoubted experiments. Lafly, that a fluid vifcid juice may change into a dry friable nature, is evident from parallel examples in egg-fhells, fnails, and other teftaceous animals; and finally, from the recent bones themfelves tranfuding, bloody and vifcid drops, foon changing into a hard bony nature, and from the folidity of a burnt bone reftored by dipping in jelly.

> REMARK.

Add to this, that among the nutritious elements of the bones, and other folid parts, the fixed, permanent or unelaftic air (§. 2.) bears a very confiderable proportion; for thus it abounds not only in the blood, but in the offific and earthy juices it
is even a fort of connecting magnet or glue, ferve ing to combine and unite the earthy particles one with another, as appears from experiments on animal calculi, foffil ftones, and other hard bodies: all which have the cohefion of their parts broke, and become friable fo foon as the faid air is expelled from them; although the manner, in which this is effected, be difficult to defcribe,
§. 245. Thus it appears in what manner the body is preferved in the fate wherein we find it in a healthy perfon, and how thofe loffes are repaired, which are perpetually made by the aetions of life itfelf. But the ftandard of nutrition varies in perfons of different ages ; for during infancy more is added to the body than is thrown off from it; but in old age the confumption or wafte is greater than the addition. The former of thefe is called the groweth or increafe of the body; and the latter its Thrinking, withering or decreafe.
§. 246. The fortus in its firft rudiments was no more than a little limpid drop of a fluid confintence, as we Thall hereafter make appear; and eyen after it has had a month's growth, what are to be future bones appear as yet no more than gelatinous membranes. From fuch a fmallnefs then as efcapes the keeneft eye is the fretus increafed with fo much rapidity by receiving a milky juice or nourifhment, that within nine months it exceeds many millions of times its firft bulk, weighing above a dozen pounds. From the time, therefore, of his birth, being expofed to the atmofphere, man increafes in a lefs proportion, or grows every day
day more flowly, 'till, in the fpace of twenty years, he fhall have acquired near twelve times his native weight, with a threefold or fourfold increafe of length or ftature. It remains, that we explain the caufes of this increafe and the quicknefs of it, during the firft months; and why this quicknefs of the growth perpetually leffens.
§. 247. The wonderful extenfibility of the fortus eatily appears from the vifcid mucous nature of its whole little body; for while the earthy principles are but few in a fætus, the watry and fucculent are more abundant: the veffels themfelves are alfo infinitely more numerous or abundant, as is evident to the eye, and from injections of the bones and membranes, in which an infinite number of veffels, not to be found in the adult, are vifible enough; many parts are alfo feen yafcular throughout in a fætus, inftead of which, in adults, we find a condenfed cellular fubftance, or an extravafated inorganic juice, as in the cartilages, coats of the veffels, fkin, tendons, bones, \&c. But the more numerous the veffels, the more eafy is the growth or increafe; fince into them the juices are carried by the nearer heart, with a greater and more confined impetus. But in the more grown animal, the juices, transfufed into the cellular fubftance, are almof ftagnant, and the extending powers are lefs.
§. 248 . But there is ftill another caufe neceflary to be taken into the account, namely, a greater proportion of force or impetus in the younger heart, with refpect to the primigenial

Of Nutrition.

folid veffels and fluid juices in the human body. This is proved by the little heart or point, which immediately appears vivid and falient, 'when as yet none of the other vifcera, nor even any of the future folid parts, make their appearance; and hence, of courfe, follows that greater frequency of the pulfe, obfervable in younger animals. For how could the animal grow, if there was the fame proportion of ftrength betwixt the tender veffels and heart of the fætus, as there is in the more refifting adult veffels and the heart of a grown perfon? And in this, if I am not miftaken, the greater irritability of the younger heart has a confiderable fhare, by which the venal blood operates with a greater force on the heart of a fœetus, than on that of an adult (§. II3.) For we fee all the fenfible organs in adults grow callous or lefs moveable, while in the fætus they are exquifitely tender and fenfible; as for example, in the eyes, ears, fin and brain itfelf. And is not the fame greater irritability alfo explainable from the greater magnitude of the head or encephalon; whence the nerves bear a greater proportion to all the other parts in younger animals?
§. 249. The heart, therefore, ftrongly exerting its force againft the mucous veffels, eafily extends them, together wirh the cellular fubftance that furrounds them, and likewife all the mufcular fibres, at the fame time, fpread with variety of veffels. But all thefe eafily yield to the prevailing force of the heart, becaufe as yet they contain only a little of the
rigid earth, but a great deal of the connecting yielding glue. [From hence come the morë frequent hæmorrhages of young folks, who have a greater force of the heart and veffels not yet rigid.] But the bones are generated in fuch a manner, that, at firf, a thick glus tinous juice, being poured betwixt two parallel veffels, and there compacted together, forms a membranous fibre, which, by repeated pulfation of the veffels, becomes bony. But the bones increafe, when thefe fibres are once formed, while the continuous lateral veffels ${ }_{j}$ being extended lengthways by the heart, draw with them and elongate the faid cohering bony fibres; by this means the cartilage, which every way terminates the bones, together with the cellular fabric (here compact and elaftic) are repelled by the faid fibres, which increafe longitudinally betwixt each elatic epiphyfis, fo as to thorten and condenfe the faid epiphyfes: Thus the length of the parts of the body is increafed; but, at the fame time, intervals are left betwixt the elongated fibres of the bones, which, by this means, become cellular, as they grow more earthy. Thefe intervals (by §. 20. and 244.) are filled with juices, which, in younger animals, are more vifid and glutinous than in adults; by this means the bony fibres and plates adhere one to another, from the glutinous matter fixing, like pegs, into their refpective intervals or foveolæ.
§. 250. That the younger bones are of a more vifcid gluey nature than thofe of adults and old people, is evident from the greater degree
degree of flexibility that remains in them, from their eafier confolidating when broke, from the greater quantity of glutinous ferum, and more abundance of jelly obtained from the joints or extremities of younger animals, and the great proportion of the cartilages to the bones themSelves.
§. 25 1. But the animal grows or increafes nlower, as it becomes more adult. This is proved from the rigidity of the parts themfelves, which were flexile in the fotus; and from many parts of the adult ikeleton being now rigid bone, which were before mere cartilage. For as the animal grows up, a multitude of veffels are effaced or clofed up into fibres, beat together by the internal pulfation of the larger artery that lies betwixt them, or upon whofe coats they are fpread; and the lights of thefe being occupied by folid matter, they become in a great proportion ftronger ; namely, by the bony juice poured into the clefts betwixt the bony fibres, or by condenfing of the cellular fubftance in all the membranes in the coats of the veffels, \&cc. But every where in all parts of the body a great portion of the more watry part of the juices being exhaled, the cellular filaments approaching nearer, attract each other more powerfully, cohere more itrongly, and refift extenfion with a greater force. At the fame time the glue itfelf, which every where adheres to the bones and folid parts, becomes drier from an expulfion of the watry principle, by the fo often repeated prefures of the arteries and mufcles. Hence
the proportion of earth in the animal every day increafes.
§. 252. Thus will all parts continue to augment in bulk and denfity, 'till they arrive at a terminus or balance, beyond which the heart will be no longer able to make an extenfion of the folids. This terminus then is prefent or compleat when the cartilages belonging to the epiphyfes or heads of the bones, are, by degrees, fo extenuated, that they can become no thinner, but like a pellicle, no lefs firm than thin, make a permanent refiftance both to the heart and to themfelves. At the fame time, and from the fame caufes, all the cellular fabric or expanfions (except in a few places) are throughout the whole body compacted of hardened, and all the membranes of the arteries, the mufcular fibres and the nerves themfelves acquire from the faid caufes (§. 25 I.) fuch a degree of firmnefs, that they can be no longer extended by the force of the heart.
§.253. The cellular web-like fubftance, however, whofe plates are naturally loofe, lodged in feveral cavities of the body, ftill gives way to the impulfe of the fat and fometimes to that of the blood, whereby it fwells or enlarges in feveral parts, fo as to caufe an increafe of the body, not in length or ftature, but in bulk or thicknefs. But this fatnefs of the body, after its full growth, feems to follow hence, that lefs nutritious matter being depofited from the blood, becaufe the growth now ceafes, there is a redundancy of it towards the other fecretions; and becaufe the refiftance to the paflage
of the humours through the leaft veffels is now increafed from their greater denfity or induration; therefore the fluggifh juices (fuch as make fat) more eafily recede laterally from the leaft arteries into the cellular diverticula. But again the fluggifh fecretions muft, at this time, be increa!ed, becaufe the relative or comparative force of the heart, as 'tis properly called, is now diminifhed. For the rigidity of the parts increafes the refiftances, while the force of the heart itfelf does not appear to have gained by the faid rigidity; becaufe we know it is a mufcle to the ftrength of which conduce flexility, a plenty of nervous juice in proportion to its folid fibres, and a confiderable portion or influx of the red blood itfelf; as we fhall explain more at large, when we come to fpeak of a mufcle. But all the forefaid additions to the body are fo far from being increafed from old age, that, on the contrary, they diminifh in it.
§. 254. But, moreover, the whole body, which is fuppofed to remain in a permanent ftate, is really in a perpetual flux, and never at reft. The change, which is made at the expence of vafcular property, never ceafes; for perpetually fome veffels go on to be effaced or clofed up into folid filaments, according as the preffures from weight, the force of the mufcles, or of the heart, continue to act more upon certain parts. Hence we obferve, that thofe parts of the body firf grow rigid, which are oftener ufed or laboured in every artift. All the cellular plates likewife are continually condenfed or hardened, while the glue and nourifnment it-
felf become more dry and earthy. From hence proceeds that rigidity of the joints and bones fo commonly obfervable in old people, the frequent change of their cartilages into a bony nature, with a hardnefs of all their foft parts, from a deficiency of the flexile glue, remarkable even in the cellular fubftance of the brain, heart and arteries, with a greater fpecific gravity of their whole body, all its particular parts; even the cryftalline lens itfelf not excepted.
§. 255. Laftly, the glutinous, attractive and nourifhing property of the juices themfelves; which belong to the human body, is diminifhed by the frequent ufe and introduction of faline foods, inflammable or fpirituous drinks, with errors and exceffes in diet of all kinds; whence the blood and lymph, at length, degenerate into a friable, acrid and little gelatinous difpofition. This is proved from the flow confolidation of wounds and fractures in old people, from the remarkable fætor of their breath and urine, from the increafe of faline and diminution of watry parts, obfervable in their blood, and from the opacity or difcolouration of fuch juices, as were formerly colourlefs or pellucid.
§. 256. In the decline of life, therefore, the intervertebral ligaments, by degrees, grow dry, hard and offified; whence the fpine lofes its rectitude by a contraction of the vertebræ towards each other forward, by which the height or ftature of the body is leffened : the tendons, having loft a great part of their flexile glue, become very Ghining, hard and cartilagi-
nous; and even the mufcular fibres themfelves by repeatedly preffing out the blood and juices from their intermediate veffels, change into a dry, tendinous, white nature: all the veffels, and more efpecially the arteries, indurate by driving out their watry juices, and frequently put on almoft a bony confiftence, while the plates of the loofe cellular fubftance are contracted into a kind of hard membranes. Thus the excretory veffels, being in all parts compreffed, and the exhaling ducts or pores clofed or beat together, an univerfal drynefs enfues, while the neceflary depurations of the blood are diminifhed. From hence the rigidity of old people is increafed, and their blood affumes a more dry earthy texture, fo as to depofite a true earthy matter, inftead of a moift vapour, throughout the cellular fabric, in all parts of the body. The truth of this appears from the numerous inftances of indurations, and bony incruftations by an effufion of this matter into the fabric of the arteries, membranes, upon the furfaces of moft of the bones, efpecially the vertebræ, and as we fometimes perceive in the very fofteft parts throughout the whole body.
§. 257. In this manner is the way opened to a natural death, which comes on fo foon as the heart, now callous and feeble, or nothing increafed in ftrength, finks under the load of all the increafing refiftances. The lungs, now lefs pliable, oppofe too great a refiftance to the right ventricle of the heart on one fide, as on the other fide, does the whole fyftem of the
capillary arteries, which, indeed, in all ftages of life, oppofe many confiderable refiftances to the heart (§. 160.) Thus the blood, gradually lofing of its motion, at length ftops, and is more efpecially collected on the right fide of the heart, while the way through the lungs is fhut up ; 'till at length the pump-like engine, we call the heart, after a few ftruggles or palpitations, becomes itfelf quiefcent under the load of ftagnant blood, which now begins to thicken or turn grumous.
§. 258. The limits of this natural diffolution, nature herfelf has fixed or appointed to all forts of animals; although her proportions therein are not yet fufficiently known to us. Man, being an animal remarkable for his longævity, eafily fpins out a natural life to twice the length of that we obferve in an ox or an horfe; fince frequently he attains the age of an hundred years, and fometimes that of an hundred and fifty. The feathered tribe, we know from certain experience, are naturally very long livers; and thefe are again exceeded by fifh, which, being furnifhed with cartilages inftead of bones, grow perpetually.
§. 259. Thus death appears to be abfolutely neceflary and unavoidable from thofe laws of nature, with which we are at prefent acquainted; only the bounds of it may be changed by a difference in the proportion of the heart to the other folids, by a variation in the powers digefting the aliments, with the particular conflitution or nature of the blood, and the heat of the external air. For the larger veffels
will inevitably comprefs the fmaller, the glue will of courfe grow more denfe and hard, as its watry parts exhale, and from the fame exhalation, nothing can hinder the cellular threads and plates from running into more powerful attractions and cohefions. Yet this rigefcence of the folids may be, in fome meafure, retarded, and the dry acrid temperature of the blood and juices may be leffened by a moderate courfe of life; not exerciing our machine too much, either by motions of body or paffions of mind, by living upon vegetable food and drink, and fhunning exceffes of all kinds, even of cold itfelf.
§.260. But it may be queftioned, whether we are to believe, that new veffels and new parts may be generated in the human body, or be again reftored ?' whether the regeneration of parts, cut off from the polype, fea-nettles, moft of the worm tribe, fnails, and the renovation of the ftomach each year in crabs, and the tails of lizards, \&c. may be efteemed fufficient argument for fuch a belief? to which add the reproduction of true bones in the place of thofe loft? whether we are to refer hither the natural reparation of the hairs, nails, feathers, \&cc. which are by no means inorganic ? to which add the new flefh generated in wounds, renovation of the fkin , reproduction of the fcrotum, the callus of bones, \&xc? the queftion, indeed, appears difficult. It feems then a common privilege, that infects, and particularly thofe fpecified, enjoy a very flow motion of their vifcid, glutinous juices, in a very P 3 fimple
fimple fabric; whence the faid juices do not run out as in us, but, by attraction, gather and cohere with the reft of the body. In man, the membranes we fee formed in hydatids, the flefh in wounds, and the callus which fills up broken bones, and even occupies the place of whole bones that have been loft, are produced from the glutinous juices, compacted by the pulfation of the adjacent arteries, and are a continuation from the divided veffels, or a production of the extremities of the perioftium within the wound. But we fee, from the reunion and growth of parts cut off and fewed on again, as in the nofe and lips, or only replaced, as in the teeth, that there is a natural neceffity for divided veffels to unite and clofe with oppofite veffels divided, But for any of the more complex, large and organical members to be reproduced, is a thing unheard of; nor can it be admitted in the human body, which has fo great a force of the heart, fuch a putrefcent difpofition in the ftagnant juices, and fuch a complexity of fabricature in all its parts, very different from the fimplicity nature obferves in the formentioned infects.
REMARK.

Fowerer unknown to us may be the intrinfic fabric, number and affections of the particles, pores and interftices in the leaft fibres, membranes and veffels, 'tis certain, that in the human body, as well as in vegetable and foffile, mixed and text bodies, they have a power of affinity, by which they felect certain particles from the common incrementive fluid, and then combine, apply and change
them,
them, fo as to become part of themfelves; and this in a moft regular geometrical fabricature, according to the laws of affinity and mutual attraction or appulfe given to the parts of matter by its creator. How regular and conftant, in their figure and combination of parts, are the cryftalizing falts, the mixed and text foffils, ftones and Ihells, from this principle merely. This power, though it be not abfent in vegetables, is yet governed by, and dependent on the force of an organic or tubular attraction and temporary impulfions from the air, heat, \&c. So likewife in animals, the tubular and corpufcular forces are modulated by centrifugal impulfion through diftractile canals; joined with external refiftances from confining, but extenfible integuments. Each of thefe powers have their limits and proportions refpectively one to another towards a natural, healthy organization and fabricature; and in the human body are fubject to fo many and different termina, in the fale of combination, from the more fimple to the more complex organs, as profufe volumes and languages arife from a few letters; that it is equally impoffible as unneceffary, to fum them up by all the powers of algebra and geometry conjunctly. If particles of falts and other foffils have an intrinfic power, by which they accede, concrete, and build up a regular texture; why may not the fame corpufcular affinity join with tubular attraction, and hygraulic vaifular impulfe, to build up a regular organization, or even to increafe or maintain it when fo built. Thefe powers in the human body feem to be engrafted one upon the other: fo that where vafcular impulfion ends, there tubular attraction begins; and where that ends, corpufcular affinity takes place, but in fuch a manner, that they always operate conjunctly to the fame end, though they may have different proportions in different parts;

216 Of Nutrition.
fo, we may fay, the hairs, like rufhes, vegetate by impulfion, or that the enamel of the teeth petrefies by vegetation. From all which we conclude, that organization, as well as nutrition, are ultimately finifhed by that corpufcular affinity, which is more remarkably confpicuous in the accretion of mixed and rext bodies, joined, however, with tubular attraction and vafcular impulfion from the heart.
§. 26 I . We have hitherto confidered what belongs in common to all the veffels of the human body in general; it, therefore, now remains for us to go on to thofe offices which belong to each artery in particular. Accordingly we chufe to fpeak firft of the pulmonary artery, as well becaufe it firft goes out of the heart from its right ventricle, as becaule the aorta itfelf receives nothing but what firft comes to it through that artery ($\S .107$.) : but then to underftand the ufes of the pulmonary artery, requires a previous defcription of the lungs, as the organs of refpiration, to which, therefore, we proceed.

L E C T UREX.

Of refpiration.

§. 262. H HE bags of the pleura (§. 75; 76.) are exactly filled by the lungs; for fo we call the two vifcera, which are diftinguifhed into right and left, in figure anfwerable to that of the bags themfelves which they fill, having a broad bafis below; they are terminated above at the firft rib, by an obtufe point or cone. The anterior face of them is flat, their fides convex or round, internally or in their middle concave, forming a concavity fufficient to contain the heart. The right lung is larger than the left, and more frequently divided, or half cut through, into three diftinct lobes or portions; but the left lung is not fo often divided into three. They are freely fufpended by the great blood vefiels, at liberty on all fides, excepting where the external membrane of the pleura, departing from the thoray to the lungs, and to the diaphragm, forms there a mediaftinal ligament. Eetwixt the lungs and pleura is found a watry, or rather ferous vapour, of a coagulable nature, like that of the pericardium (§. 80.), which vapour traniudes from the furface of the lungs, and is fometimes increafed to a dropfy, or elfe concreting into fibres, joins the lungs to the pleura.

$$
\text { §. } 263 .
$$

§. 263. The external membrane of the lungs is a fimple, thin continuation of the pleura, fpread all over them, from the adhefion of the great blood veffels of the heart, yet fo as to be capable of retaining wind eafily without breaking, after being feparated from the lungs. The fame membrane covers the interftice or mediaftinum of the lungs, like a bridge.
§. 264. The ftructure of the lungs is a heap of lobes feparated from each other by intermediate intervals, in which is extended a loofe cellular fubftance; the firft divifion of them is into two extreme lobes, which are larger, and one middle one, which is lefs, yet cohering together, although afterwards they sre again fubdivided internally through a long feries into leffer lobules down to the leaft, 'till at laft the fmall lobules terminate in very. fmall cellular membranes, which, in adults, are varioully figured and full of air, which paffes freely on all fides from one cell to another, by their open communications. Thefe veficles of the lungs, therefore, do not receive the air by a fingle orifice from the wind-pipe, as into an an oval grape or vial, but the air exhaling from the leaft branches of the faid wind-artery, is admitted in fuch a manner into their irregular fpaces, that it freely fpreads through them, from any one part of the lungs into all the reft, and returns again in like manner. This is demonftrated by inflation, which drives the air even through the leaft branches of the windpipe into the fmalleft lobes; from whence it readily readily paffes into all the reft. Nor is the cellular fabric of the intervals thut up from the veficles of the lungs, nor are the leffer lobes furrounded by any peculiar membrane.
§.265. The air is drove into thefe veficles through the wind-pipe, which arifes from the larynx (hereafter to be defcribed), and from that only receives its air. The firft part of this wind pipe is fingle, and defcends along the fmooth bodies of the vertebræ of the neck, partly flefhy and partly cartilaginous, having the gula or æfophagus behind, and a little to the left of it; namely, within the cellular fubflance that furrounds the wind-pipe, follows a canal, made up by a fucceffion of cartilaginous and mufcular rings: thefe are thin and elaftic, flatter and thicker in their foremof part, but thinner in their pofterior extremities, which are conjoined together by ftrong tranfverfe mufcular fibres, which adhering firmly to each extremity of the cartilage, compleat the circle. But the lowermoft bronchal cartilages, within the fubftance of the lungs, are compleat rings, leffening in their fizes.
§. 266. The mufcular or flefhy rings, alterṇately placed with the cartilaginous ones, are made up of red mufcular fibres. Some of thefe are traniverfe, connecting the detached ends of the annular cartilages, others defcend from each upper to the next lower ring. But other mufcular fibres again defcend perpendicularly behind from the cricoide cartilage, and having reached below the firlt divifion of the bronchia, vanifh within the lungs. The tranfverfe
verfe fibres contract or leffen the diameter of the wind-pipe, as the longitudinal ones render it fhorter. Alfo within the lungs, betwixt the imperfect rings, is found a fort of mufcular fabric, but lefs uniform.
§. 267. In the cellular coat, which furrounds the mufcular one, but efpecially in the back part of it, along the pofterior interval, that is betwixt the cartilages, are placed numberlefs fimple glands, which open by very fmall ducts, like pores into the cavity of the wind-pipe ; by which pores they depofite a watry and pellucid mucus into that cavity; which mucus, being without the leaft acrimony, not hardening into a fcaly fubftance, is of the greateft ufe in defending thefe moft fenfible membranes from being injured by an impure air, full of particles, which, by their mechanical figure or chemical acrimony, might be very troublefome. Laftly, the internal tube of the windpipe is compleated or lined by a membrane, which is continuous with that of the mouth, fimooth, foft and very irritable.
§. 268. The veffels of this part of the whole wind-pipe in the neck, come from thofe of the lower thyreoids; in the thorax, from other fmall branches of the fubclavian trunks or the mammaries, or the bronchials, properly fo called. Small nerves to it are numerous from the recurrent and intercoftal.
§. 269. In the upper part of the thorax, the wind-pipe is divided into two fimilar branches refembling the trunk itfelf, and formed like that of imperfect cartilages, alfo furnifhed
with fimilar glandules; each of which branches enters the lung to which it correfponds, only the right is fomething fhorter than the left. Having entered the lungs, the cartilaginous rings change into fragments, which become more and more difform and teffalated, or angular, intermixed with the membrane of the pleura, 'till, at length, the cartilages decreafing, terminate the laft branches of the bronchia into mere membranes. The glandules here are like thofe before mentioned (\$. 267.) But there are other conglobate glandules of the lymphatic kind ($\S .183$.) placed at the divifion of the branches, and upon the trunk of the wind-pipe, and about the lungs; but there are not of ufe to the wind-pipe.
$\S .270$. The laft branches of the wind-pipe are invifible, which exhale the air into the cellular fpaces of adult lungs, and likewife receive the watry vapours exhaling from the arteries into the faid fpaces; from whence they are thrown out by expiration.
§. 271. The blood veffels of the bronchia are the arterice \mathcal{S} vence broncbiales; the former are almof conftantly two, one coming from the upper intercontal of the aorta, which is diftributed either to the right only, or to both the lungs; the other, from the trunk of the aorta itflf, goes to the left lung. Sometimes there are more than two bronchial arteries to be feen; as when there are three, by the addition of a fecond from the aorta. But fometimes again there is only one artery in common. The bronchial veins are mof commonly two,
one right from the vena azygos, the other left from a peculiar branch of the fubclavian vein. Thefe blood veffels' travel together with the branches of the wind-pipe, and defcend into their membranes in fuch a manner, that the pulmonary arteries, in their way, inofculate with their contiguous arteries, as the veins likewife communicate with each other. There are fome inftances where the pulmonary vein itfelf has given fmall branches to the lungs, to the wind-pipe, and particularly to the furface of the lungs.
§. 272. But there are other larger veffels belonging to the lungs, called the pulmonary artery (defcribed §.100 and 102), and the pulmonary vein (§.IO4.). The trunks of thefe blood veffels likewife accompany the branches of the wind-pipe in their courfe through the lungs, furrounded with a good deal of cellular fubftance, which fubfance, being increafed, compofes the ultimate fpungy fabric of the lungs themfelves. Within this cellular fabric, and likewife upon the ultimate fpaces or cells, the air veffels and blood reffels are fubdivided, fpread and interwove fomewhat like the memes of a net; and here the fmall arteries (§.26I.) exhale a plentiful vapour into their cells, and the veins abforb a watry vapour from the fame cells. Hence water tinctured, the whey of milk, or a thin waxen injection, being urged into the pulmonary artery, flows with a froth into the wind-pipe; or on the contrary, being urged from the wind-pipe into the lungs, they penetrate into the pulmonary artery. In like
manner,
manner, injections pafs from the pulmonary vein into the wind-pipe, or from thence again, they may be forced into the veins. Laftly, a liquor, injected by the arteries, readily enters the pulmonary veins, and the reverfe.
§.273. The lymphatic veffels, as in other parts, form a net-work upon the furface of the lungs, from whence there are branches conveying the lymph to the cavity at the back part of the mediaftinum, and to the fmall glands, which lie behind the æfophagus, opening, at laft, into the thoracic duct. The pulmonary nerves are fmall, from a nerve of the eighth pair, which defcends and fubdivides according to the courfe of the bronchia. There are alfo fome fmall nerves to the lungs from the recurrent, and likewife from the cardiac plexus, which enter together with the large blood veffels.
§.274. The quantity of blood, which enters into the lungs, is exceeding great, equal to (or even perhaps greater than) that which is fent in the fame time throughout the reft of the whole body; which, therefore, demonftrates fome very confiderable ufe, proper to this vifcus. And that this ufe depends manifeftly upon the air, appears from the univerfal confent of nature, in which we fcarce find any animal without breathing; alfo from the ftructure of the lungs in the fœetus, in which, for want of air, they are ufelefs, receiving only a fmall portion of the blood, which the pulmonary artery conducts from the heart. We are now, therefore, to fpeak of refpiration, by which the air is drawn into, and expelled from the lungs.
§. 275.
§. 275. The element of air appears from the principles of philofophy, to be an elaftic, invifible and fonorous fluid. But the atmofpherical air, which we commonly receive into the lungs, is impure, filled with a great quantity of watry vapours, with the feeds of plants and animals, and other foreign matters, but in very minute particles; fo that it weighs 850 times lefs than water. This air, which furrounds the earth on all fides, being preffed by the incumbent columns of its own mafs, perpendicularly, laterally and in all directions, enters, wherever it meets a lefs refiftance, and with a confiderable force, as appears from experiments made with empty or exhaufted veffels, and by the air-pump.
$\S .276$. This air is excluded from all parts of the human body by the furrounding clofe fkin, which, even when dried or tanned, is impervious to the air ; but more fo as under the fkin is placed the fat, making an equal refiftance to the narrow openings of the abforbing veffels. It, therefore, now remains for us to enquire, why the air enters the lungs of an adult perfon; for with this they are, in a manner, conftantly full, and of courfe are equally preffed, and refifting againft the weight of the whole atmofphere: but that the lungs always contain air is evident, becaufe, however clofe you comprefs them, they will be Atill lighter than water; and even in the foetus, after they have been inflated but a few times, they always fwim, whereas, before breathing, they fink to the
bottom of water, if they have as yet not given admittance to the air.
§. 277. The equilibrium of the air's preffure being removed in any place, it conftantly defcends or flows that way, where it is leaft refifted (§. 275°). Therefore, for the air to enter the lungs, they muft make a lefs refiftance to it than before; namely, the air, which is already in the cellular fabric of the lungs, muft be rarified; but this effect will follow, if the cavity of the thorax, in which the lungs are contained, and which they exactly fill, be dilated (§. 284.). Thus the air, which is always in the lungs, expands into a larger fpace, by which, being weakened in its fpring, it makes a lefs refiftance to the external air; and confequently a portion of the faid external air defcends into the lungs, fufficient to reftore the confined and rarefied air, filling the lungs to the fame denfity with that of the external air. See $\S .290$ and 293.
§. 278. We muft, therefore, defribe the powers, which dilate the thorax to produce this effect. The breaft or thorax is a fort of craticle or cage made up of moving bones, mufcles and cartilages; being of a figure almoft elliptical or oval with the narrower end of the obtufe cone upwards, and fomewhat compreffed before, but behind divided by an intermediate eminence of the fpine. In the upper and lateral parts of this bony craticle are placed the lungs; in the middle and lower part of there lies the pericardium and heart;
after which, a portion of the arched bafis is taken up by fome of the abdominal vifcera.
§. 279. The fhell and pediment of the thorax are compofed by twelve ribs on each fide, with the fternum before, and the fpinal vertebre in their middle behind. The firmnefs of thefe vertebræ, as well from their being locked by proceffes into each other, as by their connexion with the ribs, makes their union not eafily diffolvable, but very fufficient to fupport the ribs, as upon a folid bafis. The ribs are in general bent in the form of an irregular arch, having their greateft curvature in the fides of their back part, but extending thence in their fore part towards a right line. The bones of the ribs lie fufficiently parallel with each other. The greater part of the rib, which is bony, is round and thick backward, but thin and flat forward; while the oher part forward is completed by a cartilace, which, in general, continues the figure of the rib , in a flat broad concavity of whofe bony extremity it is fixed and grows from.
§. 280. The pofterior and bony thick part of each rib terminates in a head, along from which, in the body of the uppermoft and two lowermoft ribs, runs a cavity or groove, formed in the other ribs betwixt every two adjacent margins, which lie one towards the other. The vertebræ are tied to the ribs by ftrong ligaments, of which the principal fpread from each rib like rays into the next adjacent vertebre, other ligaments tie the tranfverfe procefs
to the tubercle of the rib, and others tie the ribs one to another and to the tranfverfe proceffes likewife at the fame time. Moreover, betwixt the angle of incurvation and the juncture with the vertebræ, each of the ten upper ribs fend out a protuberance, which, being articulated with the plain fide of the tranfverfe procefs of each vertebra, are fo tied by fhort and frong ligaments to that procefs, that the rib has liberty to make a fmall afcending and defcending motion, but with a confiderable degree of firmnefs.
§. 28 I . Among the anterior cartilages of the ribs, the feven uppermoft reach to the fernum, and enter into fmall notches or cavities, which are incrufted with a cartilage in the fides of that bone, to which they are alfo made faft by ftellated ligarnents. Of the five remaining ribs, the uppermoft is faftened to the feventh preceding, and that to the next lower by peculiar productions of the cartilage, firmly cemented with its fellow, and covered with a ftrong cellular membrane, by which they form a continuous margin or extremity, which is, at laft, alfo faftened to the fternum ; but in the twelve lowermoft ribs they are at liberty or detached, adhering only to the mufcles on each fide. Thefe cartilages of the lower ribs are connected by ftrong ligaments to each other and to the fternum.
$\S .282$. The courfe or direction of the upper rib is defcending, but the fecond rib joins the fternum almoft in a right angle, while the others afcend from the fpinal vertebre, but
more efpecially raife upwards, as they come nearer towards the fternum. But the bony part of the ribs is placed in fuch a direction, that the uppermoft have their fides in the fore part, very much declined forward almoft tranfverfely; the next or fecond ribs are placed almoft to a perpendicular, while the middle ones in their lower part project a little outward or forward. Therefore the firmnefs of the ribs varies, the uppermoft being fhort rather grow into the fternum than form a joint with it ; and they tranfverfely refift it with a confiderable ftrength on each fide. From thence the mobility of the fternum increafes downwards, 'till its bottom, adhering only to mufcles, has the moft eafy motion.
§.283. The fternum, in general, is a thin fpungy bone altogether, one in adults, but is varioully divided into feveral in the foetus and younger fubjects. Its upper end refembles an octogon, at the broader part of which it is articulated with the clavicles, which are jointed very clofely with the triangular head of the fternum, and with the firft rib on each fide, The fides of the fernum receive the extremities of the ribs, each into their refpective angular cavities, while the lower part of the fternum terminates in a detached bony appendix, which is, in part, cartilaginous, capable of moving and changing its pofition under the denomination of the Enfiform cartilage.
§. 284. In order, therefore, to rarefy the internal air, that the external might rufh into the langs, it was neceffary for the thorax to
be dilated. For thus all the fections of the thorax form right angles, and its capacity is increafed. This motion is performed by various mufcles, which either operate conftantly, or only at certain times. The intercoftal mufcles, therefore, all of them act perpetually in elevating the ribs. For, by this name, we underftand twenty-two mufcles, of which, eleven are external or next the fkin, and as many internal, feparated from the pleura only by fat or cellular fubftance. The beginning of the outer intercoftals is at the pofterior articulation of the ribs ($\$ 280$.) ; but the termination of them is in the anterior bony part of each rib, at fome diftance from the cartilage, in fuch a manner, that the remaining face betwixt the cartilage and fternum to the mufcle is filled by a tendinous expanfion. The courfe or direction of thefe mufcles is fuch, that the fibres defcend obliquely forward, from the lower edge of the upper rib to the upper edge of the lower rib. And that their action is to elevate the ribs, all authors unanimoufly agree; becaufe they thus defcend from the upper lefs moveable to the lower more eafily moveable kone, in fuch a manner, that their lower point lies more diftant or remote from the hypomochlion or point of motion, which is in the coftal articulation with the vertebre, confidering the rib as a lever.
§. 28 . But the internal intercoftals arife at fome diftance from the vertebræ, almof at the outer tubercles of the ribs before-mentioned (\$. 280.) ; from whence their origination con-
tinues as far as the fternum, into which the uppermoft of thefe mufcles are inferted above, The direction of thefe is contrary to that of the former, except the anterior part of the firft or uppermoft of them; fo that they defcend from the lower margin of the upper rib backward, to the upper edge of the lower rib forwards. Therefore fome doubt of their action, becaufe their lower part is inferted into that portion of the rib, whicft is neareft its articulation with the vertebra, and which, therefore, feems to be the leaft moveable: However, they elevate the ribs, notwithftanding this; for the great firmnefs or immobility of the upper rib, exceeding that of the lower, is evident from the articulation, weight, and ligaments there formed, which furpaffes that mobility, arifing from the greater diftance of the center of mo= tion: this appears from the diffection of living animals, in which we fee the innner intercoftal mufcles operate in the elevation of the ribs, and reft in the depreffion of them; alfo from a flexible thread fixed to the rib of fome hu-man-fkeleton, and drawn in the fame direction with that of the fibres of the inner intercoftal mufcles, by which means the lower rib will be always approximated towards the upper: the greater firmnefs alfo of the upper ribs proves this, as they ferve for a fixed point to the lower ones; for the firft or uppermoft ribs are from eight to twelve times firmer and lefs moveable than the lower true ribs; but the difference of diftance in them, from the center of motion, is fcarcely the twentieth part of the length of
their whole lever. [Laftly, the elevating power of the internal intercoftal mufcles appears plainly by experiment in a dead fubject, whofe thorax, being raifed or inflated, thofe mufcles fwell or contract.]
§. 286. By the action, therefore, of thefe mufcles, the thorax is elevated; fince as the ribs turn upon their articulations, their extremities thereby defcend and form larger angles; but from thence in the middle of their arches, by afcending, their lower edges are drawn upward. At the fame time, the fternum is thruft out forward more from the vertebre and from the ribs. Thus the ribs recede farther from the vertebræ, the right ribs depart from the left, and the diameter on all fides, betwixt the right and left ribs, betwixt the fternum and the vertebræ, is every way increafed to about two lines or twelfths of an inch: and therefore this enlargement, following in every imaginable fection of the thorax, will fufficiently dilate the cavity of the breaft. This action of the ribs is more particularly complete in women, and in men who have no fhortnefs of breath. But this dilatation alone is not fufficient for healthy breathing, nor is it fo confpicuous or evident in men, although, in them, the intercoftal mufcles, by retaining and elevating the ribs, very much affift the infpiration in a tacit or unactive manner, while they afford a fixed point to the diaphragm, that the whole force of that mufcle may be fpent not fo much in depreffing the ribs, as in urging down the abdomen. The bigger part, therefore, of the Q4 fpace,
fpace, which the thorax gains in infpiration, arifes from the action of the diaphragm.
§. 287 . By the diapbragm we undertand, a mufcle, expanded in a lenticular or fmall ovenlike curvature, by which, in general, the pulmonary bags are parted off tranfverfely from the abdomen, in fuch a manner, that the middle of the feptum is nearly the higheft or uppermoft part of its convexity, by which it fupports the pericardium, while its lateral parts, which arife from the fides of the thorax and loins, have on all fides a defcending obliquity, but the moft backward, as it defcends loweft of all at the fpine. The flefhy portions of this murcle arife before from the inner fide of the enfiform cartilage, and from the inner face and extremity of the feventh, eighth, ninth, tenth, eleventh and twelfth rib; after which follows an interval, in which the naked pleura lies contiguous to the peritonæum ; from thence the mu'cular legs or appendices of the diaphragm, which are much the ftrongeft part of it, being colleected on each fide into two, three or four round mufcular portions, arife flefhy from the tranfverfe procefs on each fide of the firft and fecond vertebre of the loins, and tendinous from the middle of the body of the fecond, third and fourth of thofe lumbal vertebra.
§.288. All the fore-mentioned mufcular fibres, (§. 287.) becoming tendinous, form the center of the diaphragm, which refembles, in figure, an obtufe index of a fun-dial, having the middle of the larger angle fupporting the diaphragm,
diaphragm, while the lateral angles or wings defcend backward, the left being narrower than the right. This center of the diaphragm is more moveable and at liberty than the reft; except in the middle of its tendinous part, near the flefhy margin, where the incumbent heart makes a refiftance, but the lateral parts and the flefhy portions belonging to them, are the moft moveable.
§. 289. There are two confiderable openings through the diaphragm, of which that on the right fide of its tendinous part is fomewhat fquare and lined or circumferibed by four ftrong tendinous portions; the left opening is elliptical betwixt the two mufcular legs, or right and left portions, which arife from the middle of the bodies of the vertebræ of the loins, under which opening they decuffate and crofs each other once or twice, but above they end in the tendon. This left opening is, therefore, drawn clofe together in the contraction of the diaphragm, while it is probable, that the other opening remains immoveable; becaufe the tendons of mufcles are but little changed in their motion of contraction.
§. 290. The ftructure of the parts, and the diffection of living animals demonftrate, that the flefny portions of the diaphragm, which on all fides afcend from the firm parts to the middle and more moveable portion of it, do, by their contraction, deprefs the fame, and by that means draw downward the lateral bags of the thorax, which contain the lungs (8.75.): and by this means the perpendicular diameter
of the thorax is confiderably increafed, while all the vifcera of the abdomen are compreffed and urged againft the refifting mufcles of the abdomen, with the refifting bony fides of the pelvis. So that the diaphragm almoft alone performs the office of refpiration in a healthy man, who is at reft. [The lungs themfelves are altogether paflive or obedient to the action of the air, ribs and diaphragm; to which they are preffed into fuch clofe contact on all fides, that when the thorax is denudated or cleared by the knife, leaving its capacity entire, the lungs appear filling out the pellucid pleura and diaphragm, as clofe as an onion to its withered fkins.]
§. 29I. But in larger infpirations, which receive a greater quantity of blood driven into the lungs, and when there is any obftacle or difficulty oppofed to the action of the lungs themfelves; in thofe cafes, feveral other powers confpire to dilate the breaft and raife the ribs: which powers are inferted either into the thorax, clavicles or fcapulæ, fuch as the fcaleni mufcles, trapezii, cervicales defcendentes, ferrati fuperiores, and pectorales, together with the fmall elevators, of which a more ample defoription may be had from profeffed fyftems of onatomy.
§. 292. We have hitherto furveyed the powers (\$.209, 286.), which are able to increafe the capacity of the thorax in all its dimenfions; it, therefore, remains, that the air (\$.275.), which is a heavy fluid, and preffed on all frdes by the incumbent columns of the
atmofphere, muft now enter the thorax or lungs by that greater force which it has over the little rarefied air already in the lungs, or yet more powerfully, if they contain no air at all. In this action, therefore, which is called infpiration, the bronchia or branches of the wind-pipe are every way increafed, both in length and diameter: becaufe all the diameters of the thorax are increafed : but in this act, the inflated lungs always follow clofely contiguous to the pleura, without leaving any intermediate fpace. At the fame time the pulmonary blood-veffels, which are wrapped up, together with the bronchia, in a covering of the cellular fubftance, are likewife with them extended in length, and fpread out from fmaller into larger angles, by which means the circulation is rendered eafier through them. While this is performing, the veficular fubftance, or flerh of the lungs themfelves, filled out with air, increafes thofe fpaces through which the capillary blood-veffels of the lungs make their progrefs, whereby the veficular preffure, upon each other, and upon thofe veffels adjacent, is leffened; thus, therefore, the blood will flow with greater eafe and celerity into and through the larger and fmaller veffels of the lungs. Hence, we obferve, the pulfe is quicker, during the time of infpiration. But as for the preffure of the air upon the blood in the lungs in this action, it is fo inconfiderable, as not to deferve our notice. [For the preffure of the atmofphere is never raturally fo much in.. creafed, as to urge the air through the pores
of the lungs into the blood, as it eafily may be forced by art with a fyringe; although fome of the air may be fubftantially expelled or abforbed this way, as it is in common, through the pores of all other bodies, while it approaches to a folid or fixed Atate.]
§. 293. It is by fome queried, whether there be not air betwixt the lungs and the thorax? and whether this air, being rarefied in infpiration, is not afterwards condenfed, fo as to comprefs the lungs, and caufe infpiration? and they again afk, whether this opinion be not confirmed by the inftances of birds, in which we find this matter to be truly fo. But we fee every thing concurs to confute this opinion: for (I.) immediately behind the pleura, in living quadrupeds, as well as in dead human bodies, the lungs are contiguounly vifible to the naked eye, without any intermediate fpace betwixt them (§.200.); but the pleara being per.forated, the lungs are immediately, by the contiguous air that enters, preffed together towards the vertebre. (2.) Large wounds, admitting the air only into one cavity of the thorax, diminith the refpiration; but fuch wounds, as let the air into both cavities, quite fuffocate or fupprefs the refpiration. (3.) The thorax being opened under water, fends out no bubbles of air through the faid water. Again, (4.) the imagimable face betwixt the lungs and the thorax is always filled up by a watry or ferous yapour, or elice, by the fame vapour, condenfed jnto a watry lymph. (5.) If the lungs adhere, they injure the refpiration but in a fmall de-
gree; which ought entirely to ceafe, if it required an intermediate air betwixt the lungs and thorax. Finally, (6.) the external air, being admitted to any of the internal membranes of the human body, deftroys their texture, if they are not defended by a plentiful mucus; of which we can find none, either upon the furface of the lungs or of the pleura.
§. 294. After the thorax has been every way dilated by the faid powers ($\S .290,286$.$) , as$ far as it well can be, or as far as is fufficient for the purpofes of life and health, the air, thus received into a place conftantly near thirty degrees hotter than itfelf, grows warm there from the blood, [for the middle degree of the air's heat, in the northern countries of Europe, mounts the thermometer to about 48 gr . while the mean heat of the expired air from the lungs is 94 gr . of which the difference 46 gr . of heat is gained by the air from the blood, fince breath feems to have the fame heat with the lungs in its contact] from which it acquires about fifteen degrees of heat; therefore the air thus expanding the cells to their utmoft extent, whofe dilatation, at the fame time, meets with no empty face in the thorax, the blood thereupon begins to be fopt by the air's expanfion [being rarefied or increafed one twelfth part of its bulk] compreffing the leaft veffels, by which means a new refftance arifes to the blood, perpetually flowing from the heart into the lungs; and, therefore, we fee, in hard Araining and long retenfions of the breath, the venal blood fagnates in the veins (efpecially
about the head) before the right fide of the heart, which is now fhut, becaufe unable to empty itfelf into the lungs; whereupon the face fwells or looks red, and fometimes the veins of the brain, neck, inteftines, kidneys, lungs, or even the right auricle itfelf, will be burftened by the violence. Such is the caufe of death, in thofe who are fuffocated by compreffed air, by drowning in water, or by ftrangling with cords. Therefore that anguifh or uneafinefs; which arifes from the ftoppage of the blood in its courfe through the lungs of a healthy perfon, is the occafion which excites him to open or relax again the powers of infpiration, and immediately to ftir up the forces which concur to expiration, thereby to free the thorax and lungs from the too much rarefied air.
§. 295. The powers concerned in expiration are chiefly the oblique mufcles of the abdomen, together with the ftrait and tranfverfe ones. The former of thefe are, in one part of them, faftened to the lower ribs, and, in another part, they are attached to the os pubis and ilium, as a fixed point, with refpect to the breaft. Therefore the frait mufcles, being contracted, deprefs the arch or convexity into which the abdominal vifcera are thruft by the diaphragm, and bring the fame nearer to a ftrait line; and, at the fame time, the abdominal vifcera are preffed by thofe mufcles upward and backward againft the diaphragm, which alone is able to give way, and yield up into the thorax, which, at that time, is rendered fhorter. The oblique mufcles, for the fame reafons,
comprefs the lateral parts of the abdomen, and urge the liver, fpleen and fomach upwards: and laftly, they draw down the ribs, which were before elevated by the intercoftals. The tranfverfe mufcles, indeed, do not draw down the ribs, but they pull the cartilages of the falfe ribs a little inward, and render the whole capacity of the abdomen lefs, while, at the fame time, they urge the vifcera againft the diaphragm. By thefe means the thorax, contrary to its former ftate (§.286.) is every way rendered narrower and Morter, fo as to expel as much air out of the lungs, as is fufficient to relieve the uneafinefs caus'd by its retention (§. 294.). At the fame time the mufcular fabric of the bronchia exerts a power of contraction againft the diftending air, fo as to promote its expulfion; and the ribs themfelves likewife returning by their elafticity to that fituation and reft, which their articulations require in a fate of expiration, do all of them fly upwards and. together, fo foon as the extending powers ceafe; whereupon their elafticity refores them fpontaneoufly to their refpective places during expiration. From hence expiration becomes eafier than infpiration, and quicker in proportion as three to two; and from hence it remains always as the laft act in a dying perfon. The triangular mufcle alfo of the fternum, by elevating the cartilages of the true ribs, together with the Rernum itfelf, which they draw upward and backward, has fome fmall hare in this action.
§. 296.
§. 296. In a more powerful refpiration, when the infpirations are made wilfully greater, the expirations are likewife increafed by the affifance of fome other powers, as of the facro lumbalis, longiffimus and quadratus mufcles of the back and loins. This force, by which the air is blown out of the lungs through a tube, is fufficient to carry a leaden bullet, weighing above a dram, to the diftance of one hundred and fixty yards. But in a healthy perfon, the mufcles of the abdomen alone fuffice to an eafy expiration, in which the lungs are not fo much emptied of air as they are by a violent efflation.
§.297. The effects of expiration are a compreffure of the blood veffels in the lungs, a reduction of the bronchia or branches of the wind-artery into more acute angles, a preffure of the reticular fmall veffels by the weight and contact of the adjacent larger veffels; by which means part of the blood, hefitating in the capillary arteries, is urged forward through the veins to the left fide of the heart, while, at the fame time, that part of the blood is reffifted which flows in by the artery from the right ventricle; for we fee, by experiment, that if the lungs are not inflated, they are never well filled by an injection, which always fucceeds the beft, by caufing the lungs to imitate vital refpiration. [Does not, therefore, the blood feem to flow quicker through the lungs, than through other parts of the body? and is not this made probable from the quantity of the blood,
blood, and the thortnefs of its courfe, in going from the right to the left ventricle?]
§. 298. In this manner a frefh neceffity follows for repeating the refpiration; becaufe the collapfed veffels of the lungs refift the blood, repeatedly expelled from the right ventricle of the heart. And this makes another caufe of death, in thore animals which expire in veffels exhauled of air: for in fuch, the lungs, having the air drawn out from them, appear denfe, folid and heavier than water; whence they are rendered impervious to the blood. Of the fame kind is the death of thofe who are extinguifhed by lightening. Thus, therefore, by the power of a moft wife fabricature, the organs of expiration are relaxed, fo foon as that uneafinefs is perceived, which arifes from the hinderance of the blood's courfe through the lungs; and thereupon the powers of infpiration are excited into action, whereby the courfe of the blood through the lungs is rendered free and quicker. [A denfe air will fuppore life much longer than that which is rarified; becaufe the former more eafily and fpontaneoufly enters and diftends the lungs, while the latter, being unable to overcome the refiftance of the air-veffels and confined breath, is excluded. Yet a bealthy perfon can, without much difficulty, fupport any air that has but half the common denfity of the atmofphere.]
§. 299. It is by fome queried, whether or no there are not other caufes of alternate refpration? whether or no we may hope for any difcovery in this matter, by comprefing the R
vena azygos, the phrenic nerve, or intercepting the blood fent to the brains? But thofe are repugnant to comparative anatomy ; by which we always find the fame alternation in the breathing of the animal, independent of any fuch nerve or vein. Whether or no refpiration is from the aliernate contraction of the antagonift mufcles, among which, thofe of expiration relax the others of infpiration, and the reverfe? but in this manner, all the mufcles of the buman body are perpetually in an alternative motion.
$\S .300$. From what has been hitherto faid, it appears, that refpiration is unavoidabiy and abfolutely neceffary to life in a healthy adule perfon; becauie, whether the lungs remain long in a ftate either of expiration or infpiration (§.293, 293.), we fee death will be the confequence. Therefore no animal, that has lungs like ourfelves, after it has once breathed, can fubfift longer than a few minutes without the ufe and benefit of a free air'; but it will either perih, or, at leaft fall into fuch a ftate, as differs from death only in its being recoverable again by certain powers or actions.
§. 301. But the ufe of refpiration is different from this neceffity, which nature might have avoided, either by ufing no lungs at all, or elfe by difpofing them in a manner, refembling thofe of the foetus. This ure, therefore, of refpiration muft be very confiderable, fince all animals are either made with lungs, or with fills as in fifh, or elfe with a wind-pipe difperfed
perfed through all parts of the body, as in infects.
§. 302. In order to difcover this immediate ufefulnefs of refpiration in mankind, let us compare the blood of an adult perfon to that of a foetus, and alfo with the fame vital fluid in fifh. It appears then in a foetus, that the blood is deftitute of its florid rednefs and folid denfity; and in the blood of fifh we obferve, there is neither heat nor denfity, and but little craffamentum contained in it; and, therefore, all thefe properties, we are, by the nature of things, perfuaded, the Slood acquires in the lungs.
§.303. It follows, therefore, that our blood acquires its heat principally in the lungs; for that all animals, which have lungs, and two ventricles in the heart, have the hear of their blood commonly twice that of the atmofphere (§. 294.). [Thus, in the fame northern feas, we obferve, that thofe fifh, which have no lungs for breathing, are cold as the element, although their flight and motion through the waters be ever fo ftrong and rapid; but at the fame time thoie of the whale kind, which breathe with lungs, have their blood warm like that of man, although they remain almoft ever neepy and fluggion. Neither the heart, therefore, nor all the reft of the body, are able to. generate the heat of the blood, without the affiftance of the lungs.] But does not this arife from the alternate extenfion and contraction, relaxation and compreffion of the pulmonary veffels ($\$.292,205$.$) , by which the folid$
parts of the blood are perpetually rubbed together, and clofely compreffed in the attrition that is made during expiration, as it is more rapidly moved and ground together during infpiration. Nor is it any objection to this, that water cannot be made to grow hot by any friction. Nor, in reality, is that affiertion true; for water, by violent winds and motion, as well as milk, acquires fome degree of warmth; and the blood, which is fo much more elaftic and inflammable than water, muft of courfe acquire a much greater heat. Nor is the heat of the blood from any efferveicence. For only the mufcular motion, being increafed, or even merely by an increafed ufe of the organs of refiriation, the heat of the blood is augmented; as it is diminithed in proportion, as thofe actions are diminithed, and foon ceafes when they are wholly fuppreffed.
§. 304. The denfity of the blood is, indeed, again promoted in the lungs, partly by the copious difcharge of the wasry vapour, which is there feparated, and expelled from the pulmonary vefiels, by which the reft of the mafs will become feecifically heavier. But the fame effect feems to follow more efpecially from the attrition and prefure, which the blood here fuffers in being aiternately retarded, accelerated, and figured in its courfe through the modulating tubes of the leatt veffels, which give a fphericity and denfity to the particles. And, in this refipeet, the pulmonary vein, being fmaller than its correfponding artery, is of no fmall ufe towards increaing the attraction of cohefion
fion betwixt the parts of the globules, fo as to comprefs and bring them clofer to each other. But it is well known, by the experiments of Sir Ifaac Newton, that rednefs is increafed by a greater denfity of particles. From hence it is, that the rednefs, heat and denfity of the blood are always proportionably encreafed together by mufcular motion or exercife, with which the motion of the lungs in refpiration neceflarily correfponds and increafes. [But that there is fome fmall difference betwixt the blood of the lungs and that of other parts, is argued from many experiments; and particularly extreme cold there condenfes the blood in fome degree. Add to this its difference from the thin, watry and light blood of firhes.]
§. 305 . It is, therefore, queried by fome, whether the air itfelf is not received by the blood in the lungs, fo as to excite neceffary vibrations therein? whether this does not appear from the refiftance of bodies to the heavy external air ; and from the air found in the blood veffels, in the cellular fubftance, and in certain cavities of the human body; alfo, from the cracking obferved by an extenfion of the joints; to which add the air manifeftly extravafated from the wind-pipes into the hearts of certain animals, as in the locuft, together with a neceffity of a vital ofcillation in the blood itfelf? [and laftly, the increafed rednefs of the pulmonary blood ?]
§. 306. Contrary to all this, it is evident, that the blood here receives no air into itfelf; R 3 partly
partly from the minutenefs of the inhaling veffels, with the mucus that perpetually lines the fides of the veficles in the lungs; to which add the nature of the elaftic air itfelf, which is very unapt to pars through capilary veffels, with a repultion of it by water, that hinders it from pafing through paper, linnen cloth or ikins that are weted by water. Again the air being drove into the wind-pipe, never paffes to the heart, or whenever it does, it is forced thither by fome great or unnatural violence: but the permanent air in the veffels and humours of the human body, from a fate of inelafticity, may bcome elaftic by putrefaction, froft or an external vacuum. But fuch permanent unelaftic air is incorporated with all liquors, and taken into our bodies with the aliments and with abforbed vapours, mixing flowly and with fome difficulty, But there never were any elatic bubbles of air obferved in the blood of a living animal; and fuch air, being inflated into the blood veffels of any living animal, kills it certainly and fpeedily. [Nor is there any great certainty of the blood in the pulmonary veins, being of a brighter red colour.]
$\S .307$. Whether or no the blood is cooled in the lungs? and whether or no this feems to be true from the death of animals in air, which is hot to fuch a degree, as equals the heat of the hotteft breezes in the moff fultry dog-days? [and whether the pulmonary veins are not, therefore, lefs than the arteries ?] that the blood is cooled in the lungs, is thus far true;
in that, it there communicates fifteen degree ${ }^{s}$ of its warmth to the contiguous air (§. 294.). But that this was not the principal defign of nature here, upon the blood, is evident; fince no one will fay, that the venal blood is hotter than the arterial, although fome pronounce the former to be fomewhat cooler Since, therefore, the venal blood enters the lungs, if it be there cold, it will follow, that the arterits muft receive it fill colder. But then here the degrees of heat, which the blood communicated to the air, are again recovered by it. [And, indeed, a perfon may live in an air much hotter than the blooditelf. We fee the greater capacity of the right ventricle and pulmonary artery was neceffary to referve and retard the blood, as the pulmonary vein, being narrower, accelerates it.
§. 308 . Whether the ufe of the lungs is to abforb a nitre from the air to the blood? or whether the florid colour, obfervable in the furface of a cake of blood, be owing to the fame caure, while the bottom part looks of a dark and blackifh colour? remain as quefions with fome. That there is a kind of volatile acid in the air is certain, fince that meeting with a fuitable earth forms nitre; for a nitrous earth, being exhaufted of its falt, and expofed again to the air, becomes re-impregnated with more nitre. But the fame univerfal acid, we know by certain experiments, meeting with a different fort of earth, forms a vitriolic falt, or elfe fea-falt. For the caput mortuum of fea-falt, R 4 which
which remains after the difillation of the fpirit, recovers fo much ftrength from the air, as enables it to yield more firit by diftillation; even in fnow there is a cubical falt, but marcafite fweats out a true vitriol, and colcothar recovers again the acid firit, which was drawn from it; alfo fixed alcali, expofed to the air, turns into a vitriolic tartar. This, therefore, cannot be the ufo of refpiration, becaufe thofe falts abound in too fmall a quantity in the air for fuch ufes; and air is fitteft for breathing when pure in high mountains, where thofe falts are the leatt to be found; nor is there any nitrous falt, as yet known, to be found in our blood. As for the upper part of the furface of the cake of blood appearing of a bright florid colour, that arifes from a relaxation or loofer difpofition of the fpherical globules there, while the bottom part appears black, becaufe the globules are there more compreffed and condenfed by the other incumbent parts.
§. 309 . If it be afked, why tortoifes, frogs, I'zards, fnails, ear-wigs and other infects live long without air; we anfwer, that in them the lungs are given not fo much for the preparation of the blood, which they receive but in a very fmall quantity, as for the ule of fwimming in the water: and from hence it is that their lungs are immediately joined with the vena cava and great artery. But infects, we know, draw the air in, and exhale it again through their fkin. If it be afked, why all animals perifh in air that is confined or not renewed,
renewed, although the animal be fmall, fuch as little birds; we anfwer, becaufe the air, which has once entered the lungs, and been fouled by watry vapours, is rendered lefs elaftic, and unfit for refpiration ty alcaline vapours. Hence it is, that the animal furvives longer in air that is more compreffed, than that of the atmofphere: for in that cafe, there is a greater proportion of the ela ic element, which takes up a longer time to corrupt it. But even, in other cafes, confined air is rendered deftractive only by fagnation, and flling it with vapours. But the reafon, why animals fwell in an exhaufted veflel, is, from the extrication and expanfion of the unelaftic air lodged in the blood and other juices.
$\S .3 \%$. There is a certain confent or proportion between the pulfe and the refpiration; that according to the common courfe of nature, there are three or four pulfes counted to one refpiration. But if more blood is fent to the heart, in a given time, the numbers, both of the pulfe and refpiration, are increafed. This is the reafon of the panting or fhort breathing in a perfon that exercifes his body with any confiderable motion; whereby the venal blood is returned fafter to the heart (§. 142.). But if the blood meets with a greater refiftance in the lungs, fo that it cannot pafs freely from the right into the left ventricle of the heart, then the refpiration is increafed both in the number and magnitude to forward its courfe; and this is the caufe of fighing and yawning. If it be afted,
afked, why an animal that is dying may be recovered again to life, by inflating air into the lungs; we anfwer, that the proximate caufe of death (§.257.) is too great a refftance oppofed to the courfe of the blood through the lungs, whereby it cannot pafs to the aorta; but, by inflating the lungs, that refiftance is removed, and the way opened for the blood to pafs on, (§. 286.).
§. 31 I . The mucus, which lines the fenfible membranes of the air-veffels in the lungs, may become troublefome, both by its quantity and acrimony; it has been even known to caufe fuffocation in a droply of the lungs. Therefore its quantity, adhefion or acrimony excites a cough; namely, an irritation of the refpirative fyftem, by alternate large infpirations, fucceeded by large and quick expirations, together with fudden fhocks of the abdominal mufcles, by which the mucus, and fometimes calculous matters are expelled from the lungs.
§. 312. Laughter differs from coughing in its caufe, which reffes commonly in the mind, or, at leaft, confifts in a certain ticillation of fome of the cutaneous nerves; and, moreover, becaufe it is made up of imperfect quick expirations through the contracied glottis, after one large or deep infpiration; nor is the air perfectly evacuated from the lungs in laughter, which, in a moderate degree, conduces to health, becaufe to one full infpiration are joined many haking expirations, agitating the blood.

But much of it is in danger of fagnating the blood, becaufe the expiration is not full or entire, whereby the blood is admitted into the pulmonary artery without being fuffered to pafs through it. Weeping has fort refpirations like thofe of laughter, but finithes with a deep expiration that is immediately joined by a large inipiration; whence it has nearly the fame good and bad effects; and, when moderate, it conduces to relieve the anguih arifing from grief. Sneezing confifts of the large or deep infpiration, which is followed immediately with a powerful and fudden expiration.
§. 313. The additional or fecondary ures of refiration are many. It exhales, as an emunctory, parts redundant, or even noxious from the blood, which, in confined air, fuffocates.]. It is by this force, that the abdomen, with all its vifcera, are continually compreffed; by virtue of this, the flomach, inteftines, gall-bladder, receptacle of the chyle, blader of urine, inteftinum rectum, and the womb iffelf, difcharge their contents; by this action the aliments are principally ground or diffolved, and the blood is urged thro' the fuggith veffels of the liver, fpleen and mefentery. Moreover, infpiration ferves to convey odours with the air to the organs of fmelling. By this, the air is mixed with the aliments, which it conduces very much to break and diffoive towards a perfect digeftion. But even fucking, fo neceffiary and natural to the new-born infant, is made by the ufe of refpiration, and form-
ing an ample fpace in the mouth, in which the air is rarefied, fo that, by the greater preffure of the outward air, the milk is drove into that part where it is lefs refifted. Laftly, the voice itfelf is owing to the air which we breathe; therefore it may be not inconvenient for us, in this place, to defcribe it more particularly.

LEC.

LECTUREXI.

Of the voice and Speech.
§. $3!2.7 \mathrm{HE}$ principal organ of the voice is the larynx; for that being injured, the air pafies through the wind-pipe without yielding any found. By the larynx, we underftand an affemblage of cartilages, joined into a hollow machine or pipe, which receives the air from the fauces, and tranfmits it into the wind-pipe, having its parts connected together by ligaments and mufcular fibres. Among thefe cartilages of the larger kind, thofe, called the anular and fcutiform, are, in adults, frequently changed into bone. The anterior and larger part of this larynx, which lies almoft immediately next to the fkin, is compofed of two cartilages, one called tbyrecides, the other cricoides; to which laft the lateral parts of the larynx are fo joined, that the portions are always fo much larger, as they are higher feated. The back part of the larynx is firft made up by the faid annular cartilage, after connected by the arytænoide mufcies. The epiglottis is loofely connected above the larynx with the thyreoide cartilage, in fuch a manner, that it may be able to rife up and haut down. The blood veffels of this part are from the upper thyreoids; and the nerves, below, are numerous from the recurrents; as abovealfo there are nerves coming from
the eighth pair varioufly inofculating. The former of thefe nerves is remarkably famous for its arifing in the thorax, and being afterwards inflected round the aorta and right fubclavian ; and for the origin, which it gives to fome of the nerves of the heart, as well as for the experiment, by which a ligature upon the recurrent is found to render the voice infonorous.
§. $3!3$. All thefe cartilages are connected together by various mufcles and ligaments, with a certain degree of firmnefs to the adjacent parts; and yet fo, that the whole is eafily moveable together, as are alfo its feveral parts upon each other. Farticularly the foutiform cartilage, or the thyroidea anterior, compofed of two plates, which are almoft quadrangular, are inclined to each other in an obture angle, which is foremoft. Upon thefe cartilaginous plates, are fometimer found two apertures, one on each fide for the blood veffels of the larynx; but are not very often to be obferved. The upper proceffes of this cartilage, terminating without any protuberance, are inclined upward and backward to their connection with the horns of the os hyoides by ftrong ligaments. The lower parts of thele cartilages are fhorter, and adapted almof with a flat iurface to thofe of the cricoide cartilage, to which they are connected with a very frm articulation, by a ftrong and fhort cellular fubftance, uniting them on each fide. The middle parts before, being perforated with frong ligaments, are connected by the infertion of them to the middle of the anular cartilage; and likewife by
other ligaments above, defcending from the horn of the fcutiform cartilage into the upper part of the anular cartilage.
§. 214 . The rricoide cartilage is before thick, and ftrong increafed backward; 'tis in form of a ring unequally truncated or cut through, and in its middle part is divided into two cavities by a protuberant line. This is firmer than the reft of the cartilages, and, in a manner, the foundation of them; from this there are longitudinal mufcular fibres and ligaments, which defcend into the wind-pipe (§.266). The pharynx likewife is connected to the furface of thefe cartilages by many mufcular plates, and receives the larynx as it were into its bag.
§. 315 . The two arytanoide cartilages are of a very complex figure, fpontaneoully dividing into two parts; of which the lower is larger, and is connected by a moveable juncture with the protuberant cricoide cartilage, by a bafis moderately bollow. They afcend upwards, of a triangular figure, with the pofterior angle hollow, the anterior convex, divided by three furrows or fulci, and extenuated upwards, 'till they are, at laft, finifhed or terminated by a pretty thick, oval, cartilaginous head fixed on them. The lower part of thefe cartilages are connected by numerous mufcular fibres, partly tranfverfe and partly oblique, of which the different directions are vifible enough, but the feparation of them impracticable. Thefe are called arytwnoide mufcles. In the upper part the arytanoide cartilage departs from its companion or fellow cartlage: leaving a rima or cleft been (not very properly) by fome called the glottis.
§. 316. The arytænoide cartilages are connected with the thyreoideals, by tranfverfe ligaments fufficiently ftrong and elaftic, but covered with the common mucous membrane of the larynx, which ligaments are inferted into the flat angle of the thyreoide cartilage (§.313.) Thefe ligaments may be drawn out or ftretched from each other by removing the contact of their arytrnoide cartilages, and may be again conjoined together by placing the cartilages one to another; and this is the true glotis, which is continuous with the faid rima ($\$.315$.), but at a right angle.
§. 3:7. From the fame angle of the thyroide cartilage, under a notch, from a firm ligament is extended backwards a hollow, and fomewhat oval cartilage, in its fore-part convex, behind concave, and raifed up in fuch a manner, by its elafticity, as to project confiderably behind the tongue; but is fo fexible or inclinable downward, whenever the root of the tongue is preffed backward, that, by its tranfverfe pofition, it thuts up all paffage into the larynx, and defendes it in fuch a manner, that whatever is contained betwixt this part, called the epiglottis, and the arytænoide cartilages, paffes over downward into the pharynx. The epiglottis is conjoined to the tongue by pale membranous fibres, and to the os hyoiodes it is connected by many membranous expanfions. But as for mufcular fibres from the thyreo-arytænoidal
tanoidal mufcles and from the ary-arytænoidal mufcles, it has either nöne at all, or elfe fuch as are too minute to have any effect upon its elafticity.
§. 318. By the fides of the ligaments of the glottis (§. 316 .), there are two other upper and fofter ligaments, which go out parallel from the arytænoide cartilage to the fcutiform one, which ligaments are fomewhat lefs tendinous and lefs elaftic. Betwixt thefe two ligaments, on each fide ($\S .318,316$.) a peculiar cavity or ventricle defcends, having the figure of a compreffed parabolic finus extended downward betwixt the double tuembrane of the larynx, opening conftantly with an elliptical mouth by the fide of the glottis in the larynx.
§. 3 19. Laftly, all the internal cavity of the larynx is lined with the fame foft fenfible or irritable and mucous membrane, as we before defcribed in the wind-pipe ($\$.263$.). But this membrane is watered by a great number of fmall glands here fituated. The uppermoft are fmall fimple glands, affembled together in a heap (§. 20 I.) feated on the anterior and convex part of the epiglottis, upon the hollow furface of which they fend out various openings, fmall finufles, and productions; and others are, in like manner, continued there in fmall hard acini or bunches. Moreover, upon the hollow anterior furface and back of the arytænoide cartilages ($\$.315$.), there are fmall glandules placed on each fide of a loore conglomerate fabric, compofed of little round acini or heaps, almoft of a triangular thape, and are, doubt-
lefs, muciferous, having fome of their loofer parts extended on each fide as low as the anular cartilage. In the cavity of the ventricles, there are many fmall mucous glandules; and laftly, all the internal furface of the larynx is full of large mucous pores. All there glandules feparate a thin watry mucus, which yet has a confiderable degree of vifcidity.
§. 320 Perhaps the thyroeide glandule has a like ufe. It is of the conglomerate kind, but foft and lobular, with many coverings confiderably large or broad in its extent, but of a more tender fubftance than the falival glands, feated upon the thyroeide cartilage, and in part upon the cricoide cartilage and wind-pipe, along their fore part, fo as to incompafs the lateral horns and fides of the thyroeides; but afcending upwards by a very thin procefs before, in its middle part, as far as the os hyoides. This gland is full of a ferous, yellowifh, and fomewhat vifcid humour; but whether it emits the fame into the wind-pipe or into the gula, is not yet determined ; at leaft, there are no ducts certainly known to open into either of them. Whether or no the juices are altogether retained in this gland, and afterwards poured into the veins, in a manner refembling the fabric of the thymus, or whether it is of the conglobate or lymphatic kind, is uncertain. Yet, that the ufe of this gland is very confiderable, may appear from the largenefs of the arteries, which it receives from the carotids and lower fubclavians. The veins thereof return their blood into the jugulars and fubclavians. It has
peculiar mufcle, not conftantly to be found, ariing from the edge of the os hyoides, and fometimes from the lower margin to the left of the thyroeide cartilage, which defcends without a fellow, fpreading its tendinous fibres over the gland. Upon which alfo the fternohyoidei and fternothyocridei mufcles are likewife fpread or incumbent.
§. 32 I. The whole larynx, together with the conjoined os hyoides, is capable of being raifed confiderably, at leaft half an inch above its mean altitude; which elevation is performed by the biventer mufcles, together with the geniohyoidei, geniogloffi, ftylogloffi, ftylohyoidei, Itylopharyngei, thyreopalatini, hyothyreoidei; all or fome of which confpire together in that action. In this elevation the glottis is preffed together or made narrower, and the ligaments beforementioned (§.316.) approach nearer together. But thas, by the affiftance of the action of the arytænoide mufcles, together with the oblique and tranfverfe ones, the glottis may be accurately clofed, fo as to refift with an incredible force the preffure of the whole atmofphere.
§.322. The fame larynx may be, in like manner, depreffed to about half an inch beneath its ordinary fituation by the Aternohyoidei, nernothyreoidei, and caracohyoidei, as they are called; and, when thefe are in action, alfo by the joint force of the anterior and pofterior cricothyreoidei. In this motion the arytænoide cartilages depart from each other, and render the glottis wider, which is alfo drawn open laterally by the mufles inferted into the fides cricoarytænoidei poftici and laterales. The thyreo-arytænoidei, incumbent on thefe parts, may comprefs the ventricles of the larynx (§. 3 I8.).
§. 323. Hitherto we have given the anatomy of thefe parts, It remains, therefore, that we demonftrate what action the air produces, when it is driven by the forefaid powers (§.295.) from the lungs in expiration through the wind-pipe into the larynx, and from them urged out through the glottis into the mouth varioully configured. The confequences or effects of this, are voice, fpeech and finging. And firft, the voice alone is formed, when the air is expelled with fo great a velocity thro' the contracted glottis, that it fplits or makes a collifion upon the glottid ligaments, fo as to put the larynx into a tremor, which tremor is returned and continued or increafed by the elafticity of thefe parts. Sound, therefore, arifes from the conjunct trembling of the ligaments (§.316.), together with the cartilages of the larynx at one and the fame time, which we then call the voice, and is of a peculiar kind or modulation in every fingle clafs of animals, depending entirely upon the difference of the larynx and glottis. But when a trembling is not excited, the expired air caufes a whifper.
§.224. The ftrength of the voice is proportionable to the quantity of air blown through the glottis; and, therefore, a large pair of lungs, eafly dilatable with an ample larynx and wind-pipe, joined with a powerful expira-
tion, all conduce to this effect. But acute and grave tones of the voice, we obferve to arife from various caufes, The former proceeds from a tenfion and narrownefs of the glottis, and the latter from a relaxation and expanfion of it. For thus, in the former, a greater number of air-waves are fplit in the fame time upon the ligaments of the glottis, whence the tremors, excited at the fame time, are more numerous; but when the glottis is dilated, the contrary of all this follows. Therefore to produce an acute and fhril voice, the larynx is drawn up more powerfully, as the voice is required to be fharper, infomuch that an inclination of the head forward is called in to affift, by which the powers of the mufcles, elevating the larynx, are rendered more full and effectual. The truth of this is confirmed by experience, by applying the fingers to the larynx when it forms an acute found ; for then to raife the voice an octave, you will eafily perceive it to afcend near half an inch: alfo the fame is evident from comparative anatomy, which demonftrates the narroweft glottis and the clofeft approximation of cartilages in canorous birds; but an ample or broad glottis in hoarfe animals and fuch as bellow or bleet; an inftance of this we have in whifling, where the voice manifeftly becomes more acute by a contraction or narrownefs at the mouth: and likewife alfo in mufical inftruments, in which a narrownefs of the mouth or opening that expels the air, with a celerity of the wind blown out, are the caufes of an acute of fhrill tone.

$$
\$ \cdot 325
$$

§. 325. Gravity of the voice, on the contrary, follows from a depreffion of the larynx by the caufes (\$.323.) already defcribed; to which add a broad glottis and a very ample larynx. This is evident to the touch of the finger applied to the larynx, when a perfon fings, by which the defcent of it is manifefly perceived to be about half an inch for every octave; hence the voice of males is more grave; and hence the loweft degrees of the voice degenerate into a mutenefs or whifpering.
§. 326. Singing is when the voice, moduluated through various degrees of acutenefs and gravity is expelled thro' the larynx, while it is trembling and fuipended betwixt two contrary powers; and herein lies the principal difference betwixt the chanting of fimple notes, and the expreflion of words. Hence it appears to be a labortevs action, by reafon of the continual contracions of the mufcles, which keep the larynx at an equilibrium ; and hence it is, that finging makes a perfon hof, becaufe in acute tones the narrower glotes much retards the expiration, while, at the fame time, a great deal of air is required to give frengh to the voice ($\S .324$.); towards which again deep infpirations are neceffary. Eence likewife the wind-pipe is rendered very dry, from the quicker paffage or current of air, to prevent which a great deal of mucus is required; and, therefore, it is, that there are fuch numbers of mucous receptacles in the latynx, amongt which, I am firmly of opinion, the ventricles before defrribed (8.358.$)$ ought to be numbered.
§. 327. Speech is performed by the larynx at reft, or held in the fame place, in tones of voice differing but little in acutenefs and gravity; but then the voice is varioufly changed or molulated by the organs of the mouth. Canorous fpeech has a variation in the tone or cadence of the voice, together with a modulation of it by the organs of the mouth at the fame time.
§. 328. All fpeech is reducible to the pronunciation of letters, which differ in various nations; but moft of them are alike all the world over. Of thefe, fome are called vowels, which are made only by an exprefion of the voice through the mouth, without any application of the tongue to certain parts of the mouth. But confonants are formed by a collifion of the tongue againft certain parts of the mouth, lips and teeth. Kut to be more particular in thefe matters is befides our purpofe, which will not permit us to expatiate upon the beautiful art of pronunciation. That art, as an extraordinary inftance of mechanical knowledge, has to accurately determined all the corporeal caufes concurring to each letter ${ }_{2}$ that, by infpection only, with the affiftance of touch, letters pronounced are undertood without hearing them, and the attentive perfon is thereby taught to imitate the fame fpeech by a like ufe of the organs.
§. 329. Whether or no all the difference of tone in the voice depends entirely upon the leng th of the ligaments of the glottis, increafed by the foutiform cartilage drawn forward, and the

$$
54 \quad \text { aryte- }
$$

arytænoide cartilage drawn backward, in fuch a manner, that the Charpeft are thofe made by the ligaments in the greateft tenfion, and therefore, with a quicker vibration? this had been advanced by the experiments of fome gentlemen of note, and fince repeated by other anatomifts, [who judge, that the tenfe chords or ligaments of the glottis do, from the air perflated by the wind-pipe, produce the voice and its feveral tones in animals; fo that greater tenfity and clofure of the ligaments yields a more acute voice, as a laxity of them occafions a more grave tone of the voice. That thofe ligaments, drawn clofe, fupprefs the voice ; or being half way thut, and the reft open, they give a tone that is one octave higher; as a third part of them, thus fhut, yeilds a fifth higher, \&c.] I fhall not take upon me to determine in a matter of fuch importance, that has not yet fallen under my examination experimentally; there are confiderable doubts or objections to be made againft this fyftem, taken from the cartilaginous and bony glottis; which is thus immoveable, and in no ways extenfible in birds; alfo from the voice becoming infallibly more acute in whifling, merely by a contraction of the lips only; alfo from the inftance of women, who having a horter larynx and glotris than men, neverthelefs utter a more Thrill voice; likewife from the experiment, by which it appears, that the tone becomes more acute by approximating the ligaments of the glottis nearer together ; again, from the doubtFulnefs of the credit upon which thofe new.

Of the Voice and Speech.

experiments are publifhed; from the want of a machine of any perfection to draw the fcutiform cartilage forward; and laftly, from a frong and evident fufpicion, that the author of the experiment imagined the fcutiform cartilage to be drawn forward, when it was, in truṭh, only elevated. Therefore this invention merits further enquiry ; and as the author's laudable endeavours are not to be here difcouraged by a refutation, fo neither are they to be hattily embraced with too much credulity.

LEC.

L E C T U R E XII.

Of the brain.

§. $330 .\lceil\mathrm{HE}$ remaining actions of the human body, we fhall confider according to the order by which they receive the blood from the arteries. The coronary arteries, we fpoke of before, when we gave the hiftory of the beart; but next to thofe, the carotid arteries pafs out from the aorta.
§.331. The aorta, which comes out from the anterior part of the heart ($\$.128$.), in order to bend itfelf towards the vertebra of the thorax, forms there a confiderable arch, by which it is bent backward, and towards the left, in angle that is round but not very large. From the convexity of this arch, three confiderable branches arife, of which the firft afcends towards the right fide, and is immediately fubdivided into two large atteries. The lowermof goes on in the ditection of its trunk, under the denomination of the fubclavian. The other afcends according to the courfe of the wind-pipe to the head, and is called the rigbt carotid. The left carotid fprings next, a little inclined from the fame arch further to the left fide ; and the third, which is fill more inclined to that fide, is called the left fubclavian, which is fomething lefs than the right. About the origination of thefe arteries, the next continuous margin of the aofta is a little thicke:
thicker and more protuberant. [Dut variations from this courfe are obferved rarely.]
§. 33 . The carotid artery commonly afcends as high as the thyreoide cartilage, without fending off any branches, wrapped up together with the jugular vein and nerve of the eighth pair, in a thick, denfe, cellular fubftance. There, at the faid cartilage, it divides into two trunks, one anterior, called the external carotid, which is rather larger and more in the direction of its trunk: and this conftantly fends off a branch called thyreoidea, fuperior to the gland of the fame name, to the gula, to the pofterior and anterior mufles of the larynx. This branch fometimes arifes alfo below the divifion of the carotid. The fame external carotid fends off from its inner fide, the inflected arteria linsualis, and then the labialis, which, having given branches to the tonfils, moveable palate and uvula, afcends in a ferpentine courfe over the face to the termination at the nofe, and communicates by inofculations with the opthalmic artery, and with its fellow artery on the other fide. From the pofterior face of the carotid, the next artery which arifes, is the pharyngea afcendens, which, befides the pharyngea and branches to the mufcles of the moveable palate, fends likewife a confiderable branch in common with the nerve of the eighth pair through the foramen of the jugular vein to the dura mater, very near to the great foramen of the occiput, and by the os petrofum; afterwards this artery divides
itfelf at the cuneiform procefs of the multiform bone.
§. 333. Again, from the outer edge of the external carotid, fprings the occipital artery, which fends branches not only to the mufcles, which give it a name, but likewife fends a branch through a peculiar foramen of the dura mater in the angle, which the os petrofum forms by departing from the mamillary procefs, which artery is fpread through the feat of the cerebellum; another branch paffes over the atlas to the dura mater under or into the fkull ; and a third fometimes goes through the foffa jugularis to the dura mater. The next artery, which is the auricularis, goes to the back part of the ear, to the temple, and to the membrane of the tympanum.
§. $33 \%^{\circ}$. What remains of the external carotid artery, afcends through the parotid gland, to which, having given fome branches as well as to the face and eye-lids, it fends out the semporalis, which is a confiderable fuperficial artery upon the integuments of the bones of the temples and forehead. The trunk of the carotid, being inclined, conceals itfelf behind the lower jaw, under the denomination of maxillaris interina.
§. 335 . In that place, it directly fends off a large trunk, which paffes to the dura mater through a peculiar opening of the broad and pteryoide wings, feated at the middle foffa of the brain; from whence they are largely fpread through the temples and forehead within the dura mater, as far as the falciform finus. Some-
times this artery is double, and often gives out a branch, that is confpicuous to the lachrymal gland of the eye. In the fame place likewife, the maxillary artery enters in, under the root of the wings through the fphenomaxillary fiffure; whence afcending, it paffes by a threefold trunk as far as the upper part of the nares, where it is fpent, after having given off the branches called maxillaris inferior, and the fuperior to the teeth, with the infra orbitalis, to part of the face and eye-lids, and the palatina to the bone of the palate, with fmall branches to the dura mater, and others through the fmaller pores of the great wings, with fuch as accompany the third and fecond branch of the fifth pair of nerves; and laftly, together with the dura mater filling up the lower orbital fiffure.
§. 336. But the other pofterior trunk, commonly called the internal carotid ($\$.332$.) afcends without a branch. This artery, having firft made a confiderable ferpentine flexure, enters through a peculiar foramen in the os petrofum, where it is furrounded with a capfule from the dura mater, like that which comes out through all the openings of the fkull; from thence it afcends upwards and inclined forwards, 'till, having penetrated into the cavity of the fkull, it rifes up inflected and in a curvature, according to the direction of the fella equina, in the middle of which, there is a cavernus or hollow finus, retarding the blood; from thence, having given fmall branches to the fifth pair of nerves, it fends others to the infundibilum and dura mater, with one larger to the eye, part whereof
whereof returns again through a peculiar hole into the dura mater, which lies upon the middle of the orbit.
§. 337. But the trunk of this internal carotid, paffing over the anterior part of the fella equina, is incurvated backward, and being received by the arachnoide membrane, giving branclies to the pons and crura of the brain, with a circle to the choroide plexus, and one that accompanies the optic nerve, it then divides into an anterior and pofterior branch. The former, being conjoined with its fellow artery of the other fide by a thort inofculating branch, which fometimes fprings from the trunk itfelf, is then incurvated backward and upward, according to the direction of the os calloium, and fpreads itfelf about the middle part of the brain. The latter or pofterior divifion of the carotid, being conjoined by a fmall inofculating branch with the vertebral artery, afterwards afcends a long way upon the fide of the brain through the Sylvian foffa. All the branches of the carotid, contained within the fkull, are made up of more thin, folid and brittle membranes than the other arteries of the body.
§. 338. But the vertebral artery, commonly arifing from the fubclavian of the fame fide, though the left has been fometimes feen to fpring from the trunk of the aorta, paffes on without giving branches through a place of fecurity, 'till it enters a foramen in the tranfverfe procefs of the fixth vertebre of the neck, after which it continues with alternate flexures
to afcend through the oblique proceffes of the other vertebræ of the neck; from whence, at each interval, it fends off fmaller branches to the mufcles of the neck, and communicates with the lower thyreoideal; other branches again fomewhat larger go from it backward, together with each of the nerves, to the pia mater of the fpinal medulla; but before, the branches are larger though leis numerous, to the fame final medulla, and communicate by an anaftomofis, with its fpinal artery anteriorly. Laftly, growing lefs about the fecond vertebra, and being inflected with a large curvature round the tranfverfe procefs of the firft vertebra, it there fends off confiderable branches to two of the mufcles of the neck; alfo fmall branches it fends off in its courfe through the great foramen of the occiput or fkull to the dura mater, which lines it, and the adjacent cavities that contain the cerebellum ; after which, it goes on through the faid foramen into the cavity of the fkull. There afcending, according to the courfe of the medulla oblongata, the right trunk, by degrees, approaches nearer to the left, and is conjoined together with it (in an extraot dinary manner, hardly to be found in other parts) into an artery called the baflaris, which is fufpended in the pia mater all along under the fons Varolei. From the vertebral arteries, before they are conjoined together, pafs out branches, which go to the lower furface of the cerebellum, and are deeply inferted under the fourth ventricle to the inner fubElance of the cerebellum. Thefe are the
branches fent off by the fpinal arteries. But there are fome inftances where they arife conjunctly from a fingle trunk; and then the next artery, which it fends off, is the bafilaris: but befides branches to the medulla oblongata and crura of the brain, it gives firft the lower arteries of the cerebellum, then the upper and fuperficial ones, with fmall branches, to the fore part of the fourth ventricle. Amongft the forefaid branches alfo arifes an artery, which accompanies the auditory nerve. Finally, the bafilaris, at the fore-part of the pons, divides into two branches, each of which communicates with the pofterior branch of the carotid, and goes partly to the pofterior lobe of the brain, partly to the furface of the cerebellum, and in part to the nates, teftes and upper portion of the charoidal plexus; and in part likewife enters the anterior ventricles of the brain, and goes along with the lower portion of the choroides to the corpora ftriata, fornix, \&c.
§. 339. From the foregoing hiftory of the arteries belonging to the brain, it appears, that a very great quantity of blood is in every pulfation fent to this organ, infomuch that it makes above a fixth part of the whole blood, that goes throughout the body, and derived from trunks that are very near the heart, fpringing from the convexity of the aorta. From hence it is probable, that fuch parts of the blood go to the head, as are moft retentive of motion. Is not this evident from the effects of mercurials exerting themfelves almoft in the head only; from the fodden forse and action
of inebriating fpirits upon the head; from the fhort ftupor which camphor excites; from the heat, rednefs and fweat, which happen oftner in the face than other parts of the body; to which add the more eafy eruption of volatile and contagious puftules in the face? The well-guarded paffage of thefe great and important veffels, in their afcent to the head, defends them from any great injury. The frequent inofculations of one trunk, with the other going to the head, as well as the frequent communications of their branches among themfelves, leflen any danger that might enfue from obftruction. The confiderable flexures of the vertrebral and carotid artery ferve to moderate the impulle of the blood coming to the brain, fince a great part of the velocity, which it receives from the heart, is thus fpent in changing the figure of the inflections. To which add, that fome authors do not improperly obferve the arteries here grow larger or fomewhat wider.
§. 340. The hiftory of the brain defervedly begins from its integuments. Such a tender part fo neceffary to life, we obferve providently furrounded on all fides, firt by a fphere of bones, confifting of many diftinct portions; by which means it is rendered extenfible, at the fame time that it is effectually guarded againft external preffure. To the internal furface of this bony fphere, on all fides, grows a very ftrong membrane, compofed of two plates fufficiently diftinct, which are firmly attached by an infinite number of fmall veffels, as by fo many T foot
foot-ftalks to the whole furface of the faid bones, fo as to be no where eafily feparable in a healthy perfon; thefe, being very thin and fmooth, adhere lefs firmly to the bones, but more ftrongly to the futures, fo called from their figure, which join the bones of the ikull one to another. In younger fubjects, the adhefion of the dura mater to the fkull is fuch, that the feparation of it pulls off the fibres of. the bones to which it is connected. In adults, many of the veffels, which it inferts, being effaced, renders it more eafily feparable; yet it is not without fome force, even in thofe, that the dura mater can be feparated from the fkull. From the rupture of thefe veffels, which enter the bones of the fall, appear thofe bloody drops, which are obfervable after removing the cranium. Hence appears the vanity of all that has been advanced concerning the motion of the dura mater. But for the motion, which is remarked by the writers of obfervations upon wounds in this part; that, being preternatural, was the confequence of the beating of the arteries, in a part where the refiftance of the bone was now removed, while the reft of the dura mater, next to the fkull, fuftained the force of the heart without motion. [Alfo that part, which is properly the dura mater, has neither nerves, nor fenfation or irritability.]
§. 34 I . The outer plate of the dura mater, which adheres to the bones of the fkull, is to them infead of a periofteum, and fupplied or furnihed with imall nerves and blood-veffels coming through ail the mall holes of the fkull:
from
from whence, and from its cohefion with the perioftia of the head, fpine and whole body, it has from the Arabians received the name mater. The internat plate of the dura mater is, in mof parts, continuous with the former, but, in fome fubjects, it recedes a little from it, as in the great fphenoidal wings, and at the fides of the fella equina, where a good deal of blood is poured betwixt them; and they likewife recede thus upon the fella equina itfelf: the fame plate, having left the outermoft, adhering firmly to the bones of the fkull, defcends doubled together to form the falx, which arifes fift from behind the proceflus criftæ-galli of the multiform bone, afterwards from the crifta itfelf, and from the whole junctures of the bones of the forehead and the parietals; and laftly, it arifes from the middle of the back part of the occipital bone, and growing broader backwards, it divides the hemifpheres of the brain, betwixt which it is placed; from whence departing, it is extended to the corpus callofum. That there are Chining fibres in this part, difperfed towards the longitudinal finus from the conjunction of the tentorium, in the hape of branches and palm twigs, is certain; but it does not, therefore follow, that they have any mufcular motion; and betwixt thefe fibres frequently there is no membrane, only natural foramina are interpofed. The falx is both joined to, and continued from the middle tentorium, which is extended laterally. In the fame manner, with fome difference of fituation, the faid falx fends out a fhort plate down-
ward, which divides the cerebellum, together with the ftrong tentoria or lateral productions, which, arifing from the cruciform protuberance of the occiput, are interpofed tranfverfely betwixt the brain and cerebellum, extended as far as the limits of the os petrofum, and connected to the anterior clinoide proceffes, leaving an oval aperture for the medulla oblongata to defcend freely. Thefe productions of the dura mater ferve to prevent the parts of the brain from preffing one another, in all fituations and poftures of the body; and they likewife hinder one part of the brain from bruifing the other, by any fhock or concuffion. Hence it is, that in the more active quadruredes, where a concuffion is more likely to happen, the brain and cerebellum are divided by a bony partition.
§. 342 . In the external furface of the pia mater, not far from the finus of the falx, are placed fmall glandules, of which fome are more hard and red than others, feated in the reticular texture of the hard membrane, looking towards the finus, to whofe cavity they are oppofed, in fuch a manner, that fome of them are contiguous to the hollow of the finus; others are fo placed at the infertion of the larger veins into the pia mater, that, together with the former, they make up a continued range or feries; others of them again are foft, oval, and difpofed in heaps or affemblages. But the vapour, which exhales from the furface of the pia mater, is not feparated by thefe glands, for it is every where exhaled, even into the ventricles, where there are none of thofe glan=
glandules; and it plentifully tranfpires every where from the mouths of the leaft arteries, as we fee, by experience, when water or fifhglue are injected, which fweat out through every point in the furface of the dura mater.
§. 343 . The next covering of the brain, which is more clofe to it, exactly refembling its figure, and adapting it to that of the hollow fkull, has been, by fome, denominated, from its tenuity, aracbnoides, i. e. like a fpider's web. This very thin or tender membrane, being pellucid like water, every way furrounds the brain, whofe inequalities it climbs over, and, according to its little firength, ties together with the larger veffels, over which it is fpread, in fuch a manner, that the faid veffels feem to run betwixt the pia mater and arachnoides; which laft is, therefore, no part or lamella of the pia mater, from which it differs by fituation, and that, in a moft remarkable manner, more efpecially on the fpinal medulla.
§. 34.4. The third or innermof covering of the brain, which is foft and cellular, is properly the pia mater. This immediately invefts or furrounds the whole furface of the brain on all fides, is extremely vafcular, tender, and fomewhat of a cellular fubftance. The cells of which again contain an infinite number of moft minute veffels, which are, by this cellular fabric, exhibited like little roots or bunches of cotton to the brain. This defcends betwixt every furrow and fiffure of the brain and cerebellum, and even infinuates itfelf into the fpinal medulla. This, being received into the
cavities of the brain, changes its fabric, fo as to become foft and almoft of a medullary confiftence, more efpecially when the fubject, that comes under the examination of the knife, has lain dead fome confiderable time, yet then it is able enough to demonftrate the veffels themfelves in its fabric.
§. 345 . The veins of the brain are not dife pofed in the fame manner with thofe in other parts of the body. For neither have they any valves, nor do they run together in company with the arteries, nor have their trunks the firucture which is commonly obferved in the other veins. The veins, therefore, which come out of the innermof cavities of the brain, thofe which are fpread upon the friated bodies, the veins of the choroide plexus, with the lucid feptum and the anterior ventricles, are collected together into trunks, which, at laft, meet in one great vein or often two, which, being accompanied with many fmall arteries of the choroide plexus, defcends backward to the partition of the brain and cerebellum ($\S \cdot 342$.). In that place, it receives veins arifing from the pofterior and lower part of the brain, and fome of the cerebellum, from whence the blood paffes into a finus, which is a kind of vein included in a reduplication of the inner plate or membrane of the brain, into which the veins, to fhorten their length, are generally inferted; and this finuous vein generally defcends to the greater finus on the left fide, though fometimes it ends bifurcated, one branch on each fide.

$$
\text { §. } 346 \text { 。 }
$$

§. 346. The upper and fuperficial veins of the brain are large, and fread in the windings, with which the brain on all fides abounds. With thofe veins, through the whole furface of the brain, are inferted other veins of the dura mater; and others, which enter by peculiar orifices, into the falciform finus. From thence the veins, gradually collected together, pafs along moft of them forward, fome few of them in a ftrait direction, and others backwards, of which thofe forward are the largeft, and open themfelves by finuffes obliquely cut off into the long falcifor $m \mathrm{mms}$, which is formed by the right and left plate of the internal membrane of the dura mater, which meet together below upon the upper part of the back of the falx. From thence it is of a triangular figure, convex in its upper fide, beginning with a flender origin at the feat of the foramen caw cum, that is placed above the criftagalli; from whence it afcends and follows in the courfe of the falx, until that joins the tentorium ; it is generally inclined to the right fide, and takes the name of the igbt tranfverle finus, which then goes by a peculiar channel in the occipital and temporal bone, tranfverfely to its incurvation at the opening of the jugular vein; in which place, being much enlarged, it receives the lower finus petrofus, together with the occipital ones, which are hereby difcharged into the jugular vein. But tie left traniverfe finus refembles the former, and is like that conveyed in a fimilar courfe to the jugular vein, into which it is rather inferted on the right fide than
continued, as it were, in a trunk. Into the faid longitudinal finus, the fourth finus (§.345.) together with the occipital finus, ufually infert themfelves. But there are fome inftances, where all thefe are difpofed, in a different manner, by an infertion of the longitudinal, into the left tranfverfe finus; and then the right tranfverfe finus receives the fourth and the occipital one. At other times they are equally divided into two tranferfe trunks; and fometimes the middle finus joins the tranfverfe ones.
§. 347 . There is a flender and rounder finus, which runs along the lower and thicker margin of the falx, fomewhat of an irregular figure, receiving veins from the falx itfelf, and communicating likewife with the upper finus; it alio receives veins from the adjacent hemifpheres of the brain, and from the corpus callofum. Where the tentorium joins with the fore-part of the falx, this is commonly there inferted, into the fourth finus.
$\S .348$. The lower veins of the brain, which lie next to the bafis of the 1kull, are varioully inferted. The foremoft of them coming from the foffa Sylviana, collected together into fome trunks, are inferted into the cavernous finus or triangular interval, that lies at the fide of the fella equina, betwixt the external and internal plate of the dura mater. Other veins, from the pons itfelf, lead into the upper finus petrofus. Other pofterior veins, which come from the pofterior lobes of the brain, are inferted in great numbers into the tranfverfe finus that is feated within the tentorium.
349. The upper veins of the cerebellum, meeting together in large trunks, partly open themfelves into the fourth finus, and in part into the tranfverfe finus. The lower veins, from the cerebellum and medulla oblongata, infert themfelves into the upper finus petrofus.
§. 350 . There are ftill many fmall finuffes, befides thofe before-mentioned. The mort anterior of them, which is commonly like a circle, is larger behind than in its fore-part, which is flenderer, and furrounds the pituitary glandule betwixt the clinoide proceffes, communicating with the cavernous and with the lower petrofe finuffes; likewife communicating betwixt thofe proceffes and the carotid of nerves, artery, and again by the way of the fixth pair, with the upper petrofe finuffes behind the fifth nerve. There are fome inftances, where this finus receives the ophthalmic vein; and fometimes the tranfverfe, joining to the cavernous finus, fupplies the place of this circular finus, or elfe is prefent with it at the fame time.
§. 35 I . The upper petrofe finus is conveyed backwards in a cavity of the os petrofum, and takes its origin from the extremity of the anterior fulcus of the os petrofum, where it communicates with the cavernous finus, and receives the infertions of the veins of the dura mater, and fometimes of the anterior veins of the brain itfelf, mentioned before (§. 348 .); then it is inferted into the angle of the tranfverfe finus, where it begins to be bent. Another vein likewife defcending down through the os petrofum, is, in like manner, inferted into
the angle of the tranverfe finus. The lowe er finus petrofus, which is larger, goes round the root of the bone of this name, and communicates with its fellow behind the clinoide procefs; alfo twice it communicates with the cavernous finus and with the upper finus, and is conjoined under the nerve of the fifth pair, being finally inferted into the jugular foffa or cavity. Moreover, it receives fome veins from the vertebra. To the fame outlet alfo the otcipital finus leads on each fide, which being pretty large, goes round the margin of the foramen, 'till, arriving at the falx of the cerebellum ($\S .341$.), it is fooner or later inferted, cogether with its fellow, for the mof part into the fourth finus, and with that into the left tranfverfe one, or into the longitudinal finus itfelf; or laftly, by a divided extremity into each of the tranfverfe finuffes. This finus receives the lower and pofferior veins of the dura mater, and fome others from the vertebræ.
§. 35^{2}. The anterior occipital finus is irregular or multiform, partly traniverfe and partly defcending to the great foramen, being variounly conjoined with the lower petrofe finuffes; from whence it paffes with the nerves of the ninth pair, and either communicates through a peculiar foramen by emiffaries into the outer vertebral vein, or other branches pafling out below, open into the venal circles of the fpinal medulia. But the cavernous fmufles of the dura mater (§. 345°), being furrounded with a good deal of cellular fuftance, receives, befides the fore-mentioned finuṣ ($\$.349,3<0$),
large
large veins already defcribed, and tranfmits them with peculiar veins, together with the firft and fecond nerve, and third branch of the fifth pair, with a large artery of the dura mater $(\$.335)$, and the internal carotid ($\S .336$.$) ;$ alfo it fends out other emiffaries through a foramen, which is not conftant in the great wing, which form inofculations with veins placed on the outfide of the fkull leading to the jugulars, and efpecially with the largeft pterygoidal plexus of veins belonging to the nofe. The great vein of the dura mater, whofe branches are accompanied with an artery, is often double and inferted into one of thofe emiffaries which we have defcribed. In the fame manner, the veins of the pericranium pafs through fmall holes in the parietal bones into the longitudinal finus, as the occipital veins pafs through the maftoide hole into the tranfverfe finus thro the anterior channel of the occipital bone, and the external vertebral veins are inferted into the jugular finus; and others of the anterior occipital veins, accompany the nerve of the ninth pair. Thus there are an infinite number of ways open to the blood, by which it may pafs from the finuffes, wherein it is often collected in too great a quantity; but, by this mechanifm, it may efcape either on one fide or the other, according to the different laxity and declivity of the parts. [Hence no violent fymptoms follow upon tying either or both of the jugulars or other large veins.]
§. 353 . The great quantity of blood, which goes to the brain, the greater impulle with which
which it is fent into the carotid arteries (§.339.), and the immunity of this part from every kind of preflure by a ftrong bony fence, joined with the flower motion of the blood through the abdominal vifcera and lower extremities, alfo the perpetual exercife of the brain and fenfes, do all determine a copious flux of blood to thefe parts, and are likewife the caufes, why, upon every increafe of the circulation, the head is more particularly and furprifingly filled with blood. Hence it is, that a rednefs of the face, a turgefcence and fparkling of the eyes, with a pain and pulfation or throbing of the arteries in the head, are fo frequently followed with a bleeding at the nofe, by violent exercifes or motions of the body. From hence, therefore, it is evident, that, if the veins were of a thin and round ftructure in the brain, they would be unavoidably in greater danger of breaking, whereby apoplexies (to which, in their prefent ftate, they are often liable) would be much more frequent. To avoid this, there-fore, nature has given a different figure to the veins which carry out the blood from the brain, by which they are more eafily and largely dilatable, becaufe they make an unequal refiftance; their texture is likewife very firm, and more difficultly broken, efpecially in the larger finuffes, which perform the office of trunks; for as to the finuffes of the leffer fort, they are either round, half cylindrical, or of an irregular figure. Befides this, nature has guarded the finuffes by crofs-beams, internally made of ftrong membranes, and detached from the right
to the left fide within the finus, which, in greater diftenfions, they draw towards a more acute angle, which is capable of a larger dilatation, ftrengthening and guarding it from a rupture at the fame time. She has likewife, in there veins, provided numberlefs inofculations, by which they open mutually one into another, and openly communicate with the external veffels of the head and with thofe of the final medulla, by which means they are capable of freeing themfelves more eafily, whenever they are overcharged with blood, (\$. 352.).
§.354. It is by fome queried, whether a part of the arterial blood is not poured into the finuffes of the brain? and whether they have not a pulfation excited from that blood? that they have no pulfation is paft doubt, becaufe the dura mater every way adheres firmly to the fkull, but much more firmly in thoie parts, which are the feats of the finuffes. Indeed they receive liquors injected by the arteries; but whether thofe tranfude through the fmall exhaling arterial veffels, or whether they firt make a compleat circle through the veins, as is moft probable, we are not yet furnifhed with experiments enough to determine.
§. 355. Thus all the blood of the brain or encephalon is finally conveyed into the jugular veins, which are very dilatable, and, for that reafon, guarded with valves to prevent a return of the venal blood from the right auricle, being, at the fame time, furrounded with a good deal of cellular fubftance. For as to the blood, which goes to the head by the vertebral veins, it is a
very inconfiderable quantity; but the ample jugulars anfwer, in fuch a manner, to the great upper ven cava, in a direct courfe, that they afford the high way for the blood to return back to the heat.
§. 35 . Whether or no there are lymphatic veffels to be feen in the brain, is by fome queftioned ? Indeed we read defcriptions of them in the pia mater, and in the larger choroidal plexus; but for my own part, I have never been able to fee them, and poffibly there are none to be feen, fince there are no conglobate or lymphatic glands in the brain, which are always near at hand, wherever any of thefe veffels are to be found. As for the various accounts, which are given of the pituitary glandule, of the infundibulum, and of the ducts, which lead from thence into the veins of the head, abforbing and tranfmitting a water from the ventricles of the brain; they are not fupported by anatomical experiments, which make it more probable, that the vapour, which is fecreted into the ventricles of a healthy perfon, is, in like proportion, abforbed again by the inhaling veins, or if any part abounds, that defcends through the bottom of the ventricles to the bafis of the full, and from thence into the loofe cavity of the fpinal medulla. That this is the cafe, appears from palfies, which enfue on one fide of the body after apoplexies; and from the bifide fines or watry tumours in the lower part of the final medulla, following in thofe who have an hydrocephalus. But the faid pituitary glandule receives into itfelf a ftrong
ftrong medullary cone, which yet is inferted foft and very much like the cortical fubftance of the brain, more efpecially in its pofterior appendix, which is extended to the poiterior clinoide proceffes; but it is neither of any certain or known ufe, nor like unto any glandule, with which we are acquainted.
§. 357 . It now remains for us to fpeak of the encephalon itfelf. But many are the parts included under this general denomination. By the brain, properly fo called, we underftand that upper and foft vifcus, which is contained in the fkull, and which is lodged by itfelf in its fore-part, but backward 'tis incumbent over another confiderable pait, called the cerebeliwn, which lies in the pofterior and lower cavities of the occipital bone, under the membranous tentorium, which parts it from the brain, whofe lower, middle and white portion, defcending before the cerebellum, is, in part, called the pons, and; in part, the medulla oblongata.
§. 358 . The forure of the brain refembles that of half an egg, which is deeply divided longitudinally, but not cut through above half way. Both the upper and lower furfaces are full of many gyri or convolutions, which pretty deeply cut or divide the brain with round ends or angles into undulated portions. Upon the furface of the faid lobules or portions lies the cortex, extremely foft and inclined from a yellow or red to a grey or afh colour, being the moft tender of all parts in the human body: this inwardly is filled with the medulla, which is almoft perfectly white, except that, in many places,
places, it is perforated by red arteries, which are more fimple and perpendicular, or ftraight, than in other parts. This medulla is more folid and more capable of fuftaining its figure, notwithftanding it is very foft, and abounds in a greater quantity than that of the cortex. The greater pofterior branch of the carotid artery (§. 337.) firft divides the right and afterwards the left hemifphere of the brain into an anterior lobe, which is the larger, and a pofterior lobe, which is the lefs.
§. 359. The fabric of the cortex has been a long time controverted; bur it is now fufficiently evident, from anatomical injections, that much the greater part of it confifts of mere veffels, which are every way inferted from the fmall branches of the pia mater, detached like little roots into the cortical fubftance, and conveying a juice much thinner than blood in their natural ftate, although, in fome difeafes and by ftrangling, they often receive even the red parts of the blood, more efpecially in brutes and birds. The remaining part of the cortex, which is not filled by any injection, is either an affemblage of veins, or of yet fmaller veffels; for no other diffimilar parts are apparent in the cortex, whilft it is in an entire or natural ftate; from whence one may conjecture fome part of it to be tubular, and the other part folid. As to glandules making the fabric of the brain, that rotion has been difcarded by univerfal confent; nor indeed has there been any other opinion received with lefs probability than this.
§. 360 . In order to gain a knowledge of the nature of the medalla, we are to confider the anatomical ftructure of this part of the human brain, compared with the brains of brute animals and fifh. Therefore this part of the brain, which follows immediately under the outer gyri or convolutions of the cortex, is of a white colour, and becomes gradually bróader and more abundant; fo that, at length, it makes up the whole oval fection of the brain, except only the gyri in the furface, which make the cortex. In this part, the two hemifpheres of the brain, as before obferved, are divided but half way through; which hemifpheres (\$. 35\%.) here continue their cohefion with the medulla in the middle. That part of the medulla, which is extended under the falciform proceis, but at fome diftance from it, is called corpus callofim, in the furface of which run two parallel white Atripes. But the anterior extremity of this callous body is loft in the fubftance of the crura, coming from the anterior lobes of the brain, as likewife are the pofterior crura with the foot-ftalks of the hippocampus; moreover, the whole furface of this callous body is ftreaked with tranfverfe fibres, which ate continued, but extenuated into the next adjacent medulla of the brain itfelf.
§. 36 I . As to the remaining parts of the brain, a forutiny is more difficuir to be made into them; for the brain is not a folid bodys but begins to be hollow internally from the lower part of its medulla, which is incumbent
upon the multiform bone, at which place the greater crus of the brain paffes out from it ; and in this cavity, the medulla is only covered with the pia mater, which afcends backward, and then turning continues its courfe forward and upward. Next, the brain divides itfelf near the pofterior extremity of its callous body, and, at the fame time, fends one of its fhorter pofterior portions into the pofterior lobe of the brain, turning its extremity inward. But the anterior portion is continued a long way by the fide of the callous body, parallel to the horizon, and turning its horn and end outward, it is terminated in the anterior lobe of the brain. This cavity, of which there is one in each hemifphere of the brain, is called its triangular or anterior ventricle; and it is naturally filled with a vapour, which being frequently condenfed, puts on the appearance of water.
§ 362 . This cavity is full without any intermediate fpace by the clofe meeting together of the fides of the upper and lower medulla. The lower fide or pavement of this part is varioully figured. In its fore-part, it forms a horn, below which there is a hill moderately convex, and of confiderable length, covered with a membrane that is extremely vafcular, and being outwardly of an ah or grey colour, is called the corpora ftriata; becaufe inwardly they exhibit to the view white ftreaks, intermixed with a good deal of the cortex. More inwardly and backward there are two other fimilar hills of the medulla obfcurely frriated, but mixed, however, with fome portion of the
the cortex, and fo incumbent together, that, in their upper part, they frequently coheres and thefe continuing their courfe through the horr of each anterior ventricle, defcend to the bafis of the fizull, and there generate the optic nerves, of which thefe are called the thalami. Betwixt the faid ftriared bodies and thofe thalami, lies an intermediate white and ftreaked medullary portion, called the double femicircular center ; and this, being extended into a medullary fafcia, is continued acrofs from the right into the left fide. But then the corpora Atriata chiefly join and compofe the crura or footfalks of the brain.
§.363. It is to be obferved, that the corpus callofum medium projects or rifes up in the common axis or middle of thofe ventricles. Behind, this body lies contiguous and incumbent on the fornix or arch; but before, there are two fimilar medullary partitions, which defcend from this body the whole length of the corpora Atriata; and this part, which, in its micdle; includes an anonymous cavity; goes under the name of feptum pellucidum. This reptum is continued to the fornix, that is to fay, the four-horned medullary tracts, which took their anterior origin from peculiar mammillary protuberances in the crura of the brain, at the bafis of the fikull behind the optic nerve, now concur, and by a meeting together of the anterior part of the brain in that place ($\$, 362$.$) ,$ do there unite into one trunk. This is incumbent upon an interval of the ftriated bodies; and upon another interval of the thalami
from whence it degenerates partly into a broad thin fimbria, and partly into another tubercle, which is continuous with the fornix and callous body of an haif cylindrical figure, and furnifhed with an oppofite fimbria. Thefe defcend into the lower anterior horns of the venticles, and at laft terminate by a fort of convex fulcated end, imprinted by the cortex and named p des $b p p$ carpi, which are outwardly medullary, inwardly of a cortical fubfance. A like protule ance is continued in the poferior horn of the ventricle. Betwixt the departing crura of the fornix, the tranfverfe medullary portion, which is behind the middle plexus of the ventricles, and painted with Atreakes, or palmated, is called the pfalterium or harp.
§. 30%. Within the anterior or lower part of each of the ventricles, begins the vafcular plexus, called choroides, included in the pia mater only, except which, it lies naked in the cavity of the fkull, made up of a great many fmall arteries ($\$ 3.37,33^{\circ}$.), together with little veins leading to the larger trunk (§. 346.); all which numerous veffels, joined together by the pia mater, refemble a curtain varioully folded. With thefe are intermixed many fmall pellucid glandules of a round figure, refembling hydatids. When thofe plexuffes have reached the anterior extremity of the thalami, being afterwards reflected and united together, they gradually defcend through the crevice of the third ventricle as far as the pineal glandule, where they terminate by the meeting of other veflels
veffels (§.338.), and then continue to infinate themfelves within a large portion of the pia mater, to the lower part of the brain. From this plexus, doubtlefs, proceeds the internal warmth of the brain, with its exhalation and inhalation. [But the choroidal plexuffes become very broad, where the anterior ventricles of the brain begin to defcend, and thence, contracting gradually downward, they project their extremities to the ends of the anterior ventricles, covered only with the pia mater.]
$\S .365$. Betwixt the thalami, applied one to the other almoft with a plain furface, there is a natural fiffure terminating the crura of the brain, which meet together in the bals of the fkull, and this is called the third vertricie, which leads by a declivity, like a funnel, forward into the column of the medulla; which, though hollow in brutes, is yet evidently leis tubular in man, and connected to the pituitary glandule (§. 356.). Backward, the thatami are conjoined together in the bottom of the ventricle by a medullary fafcia; but the ventricle itfelf, being inclined forward before the nates and teftes, leads to the fourth ventricle. In this courfe, is extended round it a broad, fhort, medullary fafcia, Aretched out from the bottom of the right thalamus to the bottom of the left. But there are other fibres, which go inclined towards the right through the length of the thalami, and which likewife join the thalami together on each fide behind the former tranfverfe fafciculus, and before the pineal glandule. Thofe are generally afcribed to the
pineal glandule itfelf, with which they cohere either not at all, or by very thort productions. ' $\S .3$ 66. Agan behind the thalami, thofe tranfverfe figured eminencies of the medulla meet together, which conjoin the medulla of the tight and left pofterior lobes of the brain. In this part backward are engraved or cut out four oval eminences, which are outwardly imaller, called the nates and tefres, and which are of a fubftance inwardly cortical, but outwardly medullary. Upon thefe is feated a cortical glandule, fomewhat oval and conical, fpread with many fmall veffels, into which the choroide plexus here degenerates; and this has been celebrated by the name of pmeal slandule. [Betwiyt thefe four protuberances and the crura of the oblong medulla, pafies a groove or channel in the fame direction from the third to the fourth ventricle, manifently open, and called the aquaduct]
§. 367 . The whole medulla of the brain is, in its lower part or bafis, collected rogether into two very thick compreffed columns, diftinguifhed in their furface by a line running according to their length; and thefe have internally a cortical fubftance. Thefe, which are the crura of the brain, meeting together downward, are covered by the fubjacent crura of the cerebellum, and are inferted by apparent frata of fibres into the pyramidal bodies of the medulla oblongata; and with the other deeper fibres, which feparate the ioner tranfverfe fibres that come from the cercbellum from the precedong, meet together with the medulla cerebelli to
make up the beginning of the medulla oblongata.
§. 368. The cerebellum, as it is lefs, fo it is more fimple than the brain. It has two lobes, but no where deeply parted, united above and below in their center to a ring of the fame fabric with itfelf, called the proceffus vermiformis. This part of the encephalon contains a great deal of the cortex, with a lefs proportion of medullary fubftance. And here likewife the cortex is placed in the circumference, but marked with gyri or convolutions, which are rather parallel to each other, fo as to form circles; by which the fmall lobules or portions are difinguifhed, but not deeply, and afterwards fend out each of them their medulla, which is, by degrees, fo collected together in rays or branches, meeting in one trunk, that the whole refembles the figure of a tree. This medulla, collected together into the large crura of the cerebellum, terminates or goes off three ways; one part afcends towards the nates, where it joins with the medulla of the brain; but the right and left parts of the medullia are conjoined to each other by tranfverfe friz behind the nates. Another portion defcends into the final medulla, and terminates in peculiar protuberances, which are both anonymous, and have other cortical portions near them. A third portion, which is larger, and variegated internally with ferrated lines of the cortical fubftance, goes tranfverfely downward under the crura of the brain, which it embraces, and by twice intermixing alternately with their traniverfe medul-
lary fibres (§.307.), it is in a great meafure confounded together with them.
§. 369 . In this manner the pons is firft formed almoft of an oval figure, depreffed in its middle, having tranfverfe fibres on all fides; namely, from a conjunction of the crura of the brain defcending above thofe of the cerebellum, and paffing out from the medulla of the brain tranfverfely near the cerebellum. Afterwards the medu la oblongata, continuous to the pons, being partitioned in its middle by a peculiar fulcus, is internally variegated and ftreaked with a fubftance like the cortex, and defcends of a conical Mape, inclined to the great foramen in the occiput. "This medulla has two pair of tubercles before the pons; the outermoft, from their figure, called corpora olvaria; and the innermoft, pyramidalia; becaufe they kffen downward like a cone, and thefe are immediately divided by a fulcus, thro' which the pia mater enters. But betwixt the medullary worm-like procefs of the cerebellum, is formed a cavity above the tubercles (§. 680), where it grows broader of a rbomboidal fgure, and is called the fou th ventricle, fhut in its back part by the valvula magna, or a medullary procefs from the cerebellum, uniting the velum to the nates (8.36%) ; being cut into the medulla oblongata, and anfwering to the canal that is covered by the nates and teftes, called the aquaduct. In this lan ventricle, as well as in the foregoing, is lodged the plexus choroides, only lefs in bulk, together with an upper fulcus, called calamus friptorius. Each of thefe fulcs
fulci or divifions are continued down along the medulla fpinalis, both in its anterior and pofterior fine; and therein tranfverfe fibres are detached in its upper part from the right to the left fide, both of the medulla oblongata and fpinalis. [But two or three of the tranfverfe ftreaks, that arife from eminences, which intercept a fulcus, are inferted into the foft part of the acouftic nerve; and others of the fame kind afcend to the crura of the cerebellum]
$\S .370$. All the medulla of the brain and cerebellum goes out from the fkull, through particular openings towards certain parts to which it is deftined. The fmaller bundles of this medulla, we call neves; but the larger, defcending through the fpine, we call the modulla pinali, which is a continuation of that called oblongata (§ 369). But the nerves, which are bundles of the medulla, and very foft in their origin, are compofed of ftraight parallel fibres in diftinct threads. Thefe nervous cords, after they have gone forward fome length, covered with the firm pia mater of a redifh colour, are afterwards united into a more tough or permanent fring; and then going off from the brain, they haften to their proper opening in the dura mater, and thence run down through the intervals of the channels formed by that membrane, 'till they meet with an opening in the fkull, out of which they pafs through the membranous funnels of the dura mater. The nerve, having arrived without the fkull, is commonly furrounded by the dura mat.r, fo as to become very folid and firm. Thus it is in the
optic nerve, in the fifth pair, and in others; but in fome again there does not appear to be any dura mater furrounding the nerve, as in the olfactory nerves, in the foft portion of the auditory nerve, and the intercoftal. The nerves now defcend naked or lefs fenced betwixt the mufcles, detaching their cords or threads of which they are compored, and are fill made up of the medulla covered by the pia mater. Many fmall threads of this kind are joined together into larger, by the union of the cellular fubftance that furrounds them, through which run many fmall arteries and veins intermixed; and fometimes fat itfelf is therein lodged. But, in general, the outer covering, common to the whole nervous bundle, is either derived from the dura mater, or, at leaft, is a hard plate of the cellular fubfance, wherein all the fmaller threads are contained and united into one nerve.
§. 37 I. It is a principle, in common, to all the nerves of the head, to arife and pafs out from the lower part of the medulla of the brain or cerebellum. The olfactory nerve arifes with lateral fibres from the interval betwixt the anterior lobe of the brain, but with direct fibres from the medulla of the anterior lobe itfelf. A great part of the optic nerve fprings from the thalami (3. 362.), but fome part likewife from the medulla of the brain itfelf in the bafis of the fkull near the mammillary protuberance. The third pair of nerves come from the medullary crura of the brain, behind the mamillary bodies or protuberances. The fourth from
from the medullary ftriæ, which join the footsalk of the cerebellum to the nates (§. 358 .). The fifth arife plainly from the peduncles of the cerebellum itfelf. The fixth out of a fulcus ($\$.308$.), deep from the bottom of the pons betwixt that and the medulla oblongata. The feventh arifes with one part fofter from the medulla oblongata, and by two tranfverfe ftriæ, from the fourth ventricle itfelf; and with another part harder from that portion of the crus of the cerebellum, which lies next the pons. The eighth nerve arifes from the interval betwixt the olivary and pyramidal bodies or protruberances, and according to the obfervation of other eminent anatomifts from the fourth ventricle likewife. The ninth arifes from the corpora olivaria only. The tenth, by reafon of its double root, is reckoned a nerve of the neck, going out with an arch, in company with the upper and lower adjacent nerve. There is, therefore, no nervous branch that ariles properly from the cerebellum, unlefs it be the fifth ; for the anterior nerves, the olfactories, optics, and third nerve come from the brain only; and all the reft from thofe parts, where the medulla, both of the brain and cerebellum, are conjoined together.
$\S 372$. The fpinal medulla is a kind of medullary rope or appendix to the encephalon, continued down from the medulla oblongata, as low as the fecond vertebra of the loins, where it terminates of a rounding conical figure. In the neck its anterior and pofterior fides are flat, laterally convex, but in the back it is four fquare.
fquare. The pia mater is a proper integument to this part as well as to the brain, fince it enters the fpinal medulla deeply by each of the fiffures ($\$.368$), and divides it almoft into two. The cortical fubftance, which lies within it, is more obfcure than that of the brain. The larger anterior arteries pais back to it from the vertebrals out of the fkull, and defcend down through the whole length of the pia mater, frequently double and parallel to each other, perpetually making alternate finous flexures, which form inofculations with the vertebral arteries about each pair of nerves, likewife with the intercoftal arteries and with the branches of thofe belonging to the loins and facrum, 'till, at laft, the anterior artery, covered with a peculiar coat from the dura mater, goes out and difappears at the coccyx. In like manner, the pofterior arteries, which are lefs, arife and are diftributed from the lower arteries of the cerebellum. The fpinal veins defcend, together with the arteries, from the brain itfelf, fending out branches, in like manner, on each fide, which accompany the nerves like fo many circular finufes, fixed in the dura mater, and correfponding to the number of the vertebræ, all which fo communicate one with another, that each has, on all fides, a direct confent both with the uppermon and lowermoft; and after having fent out branches, that join the vertebral, intercottal, and lumbal veins, they unite with thofe of the facrum. The uppermoft of thefe finuffes inofculates with the anterior occipital finufes, (§. 352 .)
§. 373.
§. 373. But there is another covering, not fpread with any veffels, which furrounds the Ipinal medulla loofely and at a diftance, and is pretty firm, of a watry clearnefs, called arachnoides, and which being longer than the pia mater, is extended to the bottom of the os facrum, where the nerves, only defcending from the medulla, are collected by it into a fafciculus. But in what manner it goes out, together with the nerves, has not been hitherto defcribed.
§. 374. Laftly, the dura mater, belonging to the final medulla, and continued from that of the cerebellum, furrounds the preceding arachnoides, like which it defcends to the bottom of the os facrum, being larger at its beginning, at the bottom of the neck, and at the loins; but flenderer in the back, and, being connected ultimately by many filaments to the os facrum, it, at laft, difappears in a flender cone. As the nerves pafs out through this membrane, it gives them an external covering, and direClly thickens or fwells with them into a ganglion, or hard, oval, redifh-coloured knot, in which the rectilineal courfe of the nervous fibres is interrupted. To this hard covering of the dura mater internally adheres a ligament denticulated at the interval of each of the nerves, which arifes from the fkull near the courfe or paffage of the ninth pair of nerves, tving the arachnoides to the dura mater by triangular productions in each of the intervals of the nerves, and betwixt the anterior and pofterior bundles of the fpinal nerves down to the
the bottom. Externally, there is a fort of fat furrounds the dura mater, and alfo lines internally the covering of the vertebræ of the fpine, which, by this means, is fo adapted like a tube to the medulla finalis, that the latter is not liable to be compreffed, by the bending of it in any pofition.
§. 375. The fibres of the fpinal medulla, in dropfical fubjects and in brute animals, appear very diftinet. Thefe medullary fibres go out from the whole anterior and pofterior fides of this long appendix, after which the anterior cords are commonly wrapt up in the pia mater, in which they converge together like rays into a larger fafciculus, to which alfo join fimilar threads in another bundle from the pofteriot fafciculi joining together into one nerve, which paffing out through the holes of the dura mater betwixt each of the vertebræ, compofe the final nerves to the number of thirty, anfwering to the vertebre. Among thefe, the final nerves of the neck are thort and firong, efpecially the lowermoft; thofe of the back are fmall, and thofe of the loins again, with the firft pair of the facrum, are large. But the nerves of the facrum are fmaller. Of thefe nerves, the longeft are thofe which go out thro the loins and os facrum, arifing within the back itfelf. Thofe covered with their pia mater, accompanied with correfponding arteries, and included within the arachnoide capfule, form a rope of nerves, which is commonly called cauda equina.

$$
\text { §. } 376
$$

§. 376 . Thofe nerves are afterwards diftributed to all parts of the body in a manner very complex, and not here to be defcribed. But we muft not omit to obferve, that all the final nerves, except one or two in the neck, have both an anterior and pofterior trunk, whick pafs out together betwixt the vertebræ; and that the latter or pofterior being diftributed to the mu'cles, only the former fend out nervous foot-ftalks, which joining the other anterior and adjacent fpinal nerves, and having given a fmall circle that goes to the fixth nerve of the brain, they form together one great fource of the principal nerves belonging to the human body, which, communicating with almoft all the other nerves of the whole fyfem, fend out nervous branches to the heart and all the vifcera of the abdomen. This intercontal or fpinal nerve forms as many ganglions as are equal to the number of its medullary roots, except where feveral of thofe roots meet together into one ganglion; and thus it forms various knots or communications with the crural, brachial, and diaphragmatical nerves, alfo with the parvagum and ninth pair of nerves. The other primary or capital nerve is the eighth or vague nerve, arifing from the brain and joining itfelf to the intercoftal in the bottom of the neck, in the thorax, and in the abdomen; this paffes out of the fkull in three cords, of which the larger fends branches to the larynx, gula; lungs, and the cordiac plexus itfelf (§.94.) to the œfophagus, fomach, and liver. The third of thefe is the phrenic nerve, arifing from mof

Of the Brain.

of the lower nerves of the neck and arms; and fometimes, being increafed from the root of the fininal nerve, it defcends by the fide of the pericardium, and inferts itielf into the upper face of the diaphragm ; but below it receives nerves from the great plexus of the intercoftal nerve. Moreover, the acceffory nerve, arifing by many fmall roots from the feven uppermoft pofterior nerves at the neck, and from the medulla oblongata, joins the nerve of the eighth pair going lack again into the Rkull, and feems, by this means, to make a confent betwixt that important nerve and the final medulla Laftly, the nerves of the limbs have at theit origin plexuffes or knots, and are, on account of their length, harder or firmer in their fubfance, and much larger than the great nerves which go to the vifcera; thofe of the arms, arife from the four lower nerves of the neck and firt of the back; but thofe of the lower extremity from the nerves of the loins and os facrum.
§. 377. The nerves divide into branches like the bloodd-veffels, but in acute angles, and often in a courfe, manifefly retrograde, growing gradually fofter ard lefs in bulk, 'till, at length, their ultimate extremities, which are feldom vifitle, feem to terminate in a pulp, by depofiting the firm integuments with which they were covered, after the manner which we obferve in the optic nerve. But the rectilineal courfe of the fibres, continued from the brain itfelf, is fuch, that it is never broke off by the divifon or fplitting of a nerve into fmalier threads
threads, which only recede from each other by an opening of the cellular fubftance that tied them together. This appears from the diform ders, which are determined not to all, but only to fome fingle parts by injuries of the brain, as a lofs of the voice, deafnefs, dumbnefs and palfies of particular mufcles. They are connected in their courfe by the cellular fubftance to the adjacent parts, but have hardly any elafticity; whence they do not fly back after being divided, but only expel, by the contraction of their integuments; the foft medulla; which they include. A great many nerves are fent into the mufcles, many of them go to the 1 kin , but fewer to the vifcera, and fewert of all to the lungs. They make frequent inofculations with each other like the blood-veffels; and it is principally in thefe meetings of their branches, arifing from different trunks that the nervous ganglia are formed; namely, hard nervous tumours, for the moft part replenimed with blood-vefels, and included in a firm membrane, but of a ufe and fructure as yet not certainly known. The nerves of the fenfes only are excepted from thefe ganglia or knots; together with the eighth pair; but they feem in a manner effential to the phrenic nerves, to the fifth pair, to thofe of the limbs, to the fpinal and to the intercoftal nerves, which laft are truly fpinal nerves.
§. 378. Thus far we are taught by anatomy concerning the brain and nerves; it remains from hence, that we explain the phyfiological ufes of thefe parts. Every nerve, thereforés X
thas

Of the Brain.

that is irritated by any caufe, produces a fharp fenfe of pain, and if the caufe be great, thore mufcles, to which the primary or communicating nerve goes, become immediately agitated with a convulfive motion, which is ftronger than their natural motion, and not governed or reftrained by any power of the will. The fame thing is likewife true after death, if the experiment be made foon after, as we fee in the heart and other mufcles of brutes. (2). Any nerve being cut through, the mufcles, to which it is diftributed, become paralytic and generally wafte away or wither in a flow manner. But if the nerve fo cut performed any particular fenfe, in that cafe, whether it be cut through or only compreffed, the fenfe is loft; but by removing the compreffure from the nerve, if the ftructure of it was not fpoiled by the ligature, the mufcles regain their ftrength. All thofe effects follow in fuch a manner, that the parts, moft remote from the brain, conftantly fuffer from the injury of the nerve, without any effect upon thofe parts that are nearer to the brain. Experiments of this kind have been made upon the recurrent nerve, upon the eighth pair, and the phrenic nerve, with thofe of the limbs; and laftly, upon the lower dental nerve of the fifth pair.
§. 379 . But the medulla of the brain, being vellicated or varioully irritated, dreadful convulfions enfue throughout the whole, and this without any exception, whatever be the part of the brain fo affected. The fame confequences alfo follow, if the fpinal meduila be
irritated. But if the encephalon itrelf be comprefled in any place whatever, there follows thence a lofs of fenfe and motion in fome part of the body; which muft be the part whofe nerves are detached from the affected or comprefled quarter of the brain. This is clearly evidenced from experiments, which have been made on particular parts of the brain difordered; as from thofe, for inftance, in which the origin of the nerves are compreffed, as in the optic nerves the fight is extinguifhed; as the hearing is, from a like affection of the auditory nerve, or as the motion of one arm or leg, or one fide of the pharynx is abolifhed by a compreffure upon the roots of their nerves; But in the injuries of the fpinal medulla, it is ftill more evident, that thofe parts, which receive their nerves arifing from the place injured in the medulla, are either convulfed if that be irritated, or rendered paralytic if it be compreffed. But when any more confiderable or large portion of the brain fuffers a compreffure, either from blood, water, fchirrus, an impacted bone or other mechanical caufes, there follows perpetually either a difturbance of all the faculties of the mind, or elfe a delirium, vertigo, madnefs, flupidity; or an inz curable, fleepinefs; all which diforders ceafe upon removing the compreffing caufe. Laftly, if the cerebellum, or the corpus callofum, and more efpecially the oblongated or fpinal medulla, entering the neck, be injured in like manner, death immediately follows : becaule,
from thofe parts, principally arife aimoft all the nerves of the heart, (§.94.).
§. 380. Thefe things being confidered, there feems to be no doubt, but the caufe of all motion in the human body arifes from the brain with its annexed cerebellum and final marrow ; and that it thence proceeds through the nerves to all the mufcles and moveable folids of the body. The caure, therefore, of this motion cannot refide or dwell in the parts themfelves, becaufe otherwife the moving caufe would continue to act, after being feparated from the brain; nor would it be increafed by irritating the brain, or weakened by a compreffure of it.
§. 38 r . Nor is it lefs evident, that all fenfe arifes from an impreffion of the fenfible object upon fome nerve of the body, through which nerve, the impreffion being conveyed to the brain, when it is finally there arrived, reprefents fome idea to the mind. It is, therefore, a falfe pofition, that the mind perceives immediately in the nervous branches or fenfible organs themfelves; for this opinion is confuted by the pains, which a perfon will feel in a limb after it has been cut off, and from the interruption or removal of all pain by a compreffure of the conveying nerve, with diforders of the fenfes from affections of the brain.
$\S .382$. Whether or no this faculty of perceiving impreffed objects by the mind, and of ufhering out the motions, which follow either of neceffity or from the will, be priviledged in common to the whole brain, cerebellum, and

Of the Brain.

fpinal medulla; becaufe in thofe parts are formed the roots which are continuous with the nerves, remains a queftion? but we are not to believe this from the many inftances of wounds in feveral parts of the brain, from which the fenfes have received no injury, neither from abfceffes, which have largely wafted the lateral hemifpheres of the brain, \&xc. From hence. many queftions may arife; as whether there be any principal or particular feat of the brain from whence all motion fprings, and in which all fenfation ends, fo as to be the habitation or refidence of the mind itfelf? and whether this part be not the corpus callofum, becaufe wounds therein and the effects of difeafes are here more certainly and fuddenly fatal? whether the faid corpus callofum has a fufficient communication or connection with the whole nervous fyftem for fuch a purpofe? whether there are truly any intances of the fifth, feventh, or other nerves, arifing manifeftly from this part? whether or no wounds of the fpinal medulla are not equally or more fatal; when at the fame time we know it is not the feat of the mind; becaufe, being compreffed or deftroyed, a perfon will furvive a long time with all his mental faculties entire? [Add, moreover, in oppofition to this, that, in birds who have no corpus callofum, wounds of the final medulla are equally fatal with thofe in any other part of the encephalon.]
§. 33 . Whether or no the feat of the mind is in all thofe parts, which make the beginning of each nerve, in fuch a manner, that
the fift originations of all the nerves conjunctly make together the true common fenfory, where all the fenfations are reprefented to the mind and all motions arife, whether neceffary or voluntary? we muft confefs, that this is highly probable. For the origin of motion does not feem capable of fringing from any part below the lource of the nerve; and it would be begging the queftion, to fuppofe any part of the nerve, which is like the reft in its fabric, to be either void of fenfe or motion. Nor can the origin of motion (\$.380.) be placed higher than this; for fo it will fall within the arteries, which have neither the faculty of fenfation nor of voluntary motion; it, therefore, follows, that the feat of the mind, if it be material, muft be where the nerve firft begins its formation or origin.
§. 384 . We come now to explain the manner in which the nerves become the organs of fenfe or motion; which, as it lies hid in the ultimate elementary fabric of the medullary fibres, feems to be placed above the reach both of fenfe and reafon; but we fhall, notwithftanding, endeavour to make this as plain as experiments will enable us. And frift, it is demonftrated, that the nerves arife from the medulla of the brain, the truth of which is manifett to the eye in all the nerves of the brain, more efpecially in the olfactory, optic, fourth and feventh pair of nerves, which continue their medullary fabric a long way before they put on the covering of the pia mater.

$$
\text { §. } 38 \text { g. }
$$

§. 385 . We muft, therefore, next enquire into this medulla, what it is. That the compofition of it is fibrous or made up of parallel threads, difpofed longitudinally by the fides of each other, appear from innumerable arguments, more efpecially to the eye in the corpus callofum, in the ffriatum, and thalami of the optic nerves; but ftill more evidently in the brains of fifh. That the fibres of the brain are continuous with thofe of the nerves, fo as to form one extended and open continuation, appears, by obfervation, very evidently in the feventh, fourth and fifth pair of nerves.
§.386. But here a controverfy begins concerning the nature of this fibril, which, with others of the like kind, compofes the fubstance of the medulla and of the nerves. That this is a mere folid thread and only watered by a vapour exhaling into the cellular fabric, which furrounds the nervous fibres, has been afferted by many of the moderns.
§. 3°. But we are not allowed to receive this opinion for the following important reafons, which we here alledge. The cortex of the brain is, on all fides, vafcular, and coheres fo manifeftly, by an undivided and inextricable continuation with the medulla itfelf, that no one can either doubt or object againft this truth. Moreover, the moft confiderable portion of the blood (§. 33.9.) is fent up to this cortical part of the brain, to which the medulla is always proportionable, both in its growth and dimenfions. This being duely confidered, I conclude, that the fmall veffels of
the cortex, of which it is compofed (§.359.), are continuous with the fibres of the medulla, of which that part of the brain is wholly made up; and that, therefore, they cannot be folid impervious fibres, becaufe fuch a fabric will occafion the great quantity of juices, fent to the cortex by the carotid and vertebral arteries, to return back ufelefs, repelled from the folid medulla; again, from analogy, it follows, that the cortex, increafing by growth proportionably with the medulla itfelf, it plainly appears, that they muft have both one and the fame common incrementive caufe; which caufe (by §.249.) is the greater force of the heart, by which the blood-veffels are elongated. It follows, therefore, that the medulla alfo muft be compofed of veffels, which, in like manner, are diftended by the fame force of the heart.
§. 388. Nor is fuch a folidity of the nervous fibres reconcileable with the appearances, which follow after wounds in the nerves. For if a nerve irritated required to be ftruck, and to tremble like elafic cords, it ought to confift of hard threads, fretched out and beld faft by their extremities to certain firm or folid bodies, with a confiderable degree of tenfion; for cords, which are either unftretched, foft, or not fixed or fattened at their extremities, afford no found. But all the nerves are, in their origin, extremely foft, medullary, and very far from all tenfion; and fome of them continue thus foft throughout the whole extent, fo far as that goes, of which we have an example in the olfactory nerves, and in the foft portion of the
the auditory nerve, from which we ought more particularly to expect thofe tremors, which refemble found. Moreover, when the nerves are hard, they always grow foft afierwards in the vifcera, mufcles and organs of fenfe, before they operate; and, therefore, the nervous fibres, being in no fate of tenfion, either in their begimning or ending, cannot be fubjeci to elaftic tremors. Even in thofe moft chofen and likely circumftances, the nerves can have no tremors, where they are faftened in a more tenfe manner to the heart, pericardium and great arteries; becaufe they are clofely tied to the adjacent folid parts in their progrefs by the furrounding cellular fubftance. Finally, that the nerves are very far from all elafticity, is demonftrated by experiments, in which the nerves cut in two neither fhorten nor draw back their divided ends to the folid parts, but are rather more elongated by their laxity, and expel their contained medulla in form of a protuberance. [Again the extreme foftnefs of the medulla in the brain, with all the phenomena of pain and convulfion, leave no room to fufpect any fort of tenfion, concerned in the effects or operations produced by the nerves.]
§. 3^{89}. Add to this, that the force of an irritated nerve is never propogated upward, fo as to convulfe the mufcles that are feated above the place of irritation, although the trunk of the nervous cord may happen to be firmer and tighter in that part; which is a confequence altogether difagreeing with elafticity, whofe tremors propogate themfelves in
cords
cords and other bodies every way from the point of percufion. Thefe arguments, therefore, ferve to demonftrate, that there is a liquor fens through the brain, which, defcending from thence through the nerves, flows out to all the extreme parts of the body; the motion of which liquor, quickened by irritation, operates only according to the direction, in which it flows through the nerve, fo that convulfions cannot thereby afcend upwards, becaufe of the refiftance made by the frefh affux of the fluid from the brain. Nor is the experiment made upon the phrenic nerve without its force in this argument, by which it appears, that compreffing the nerve with a motion downward, the contraction of the diaphragm is increafed, but, by compreffing the nerve upward, the motion ceafes; from whence it is evident, that in the firft cafe the natural courfe of the nervous liquid is quickened, and in the latter fufpended; nor can the nerves ever act as cords, when they never tremble by any preffure, in whatever direction they may be urged by the finger.
§.390. I believe it is, therefore, certain, that the nervous fibres are hollow, and perform their offices not by their elafticity, but by the motion of their juice. Nor is the objection, which arifes from the fmallnefs of there tubes, not vifible by any microfcope of any force againft the propofed arguments; to which add the abfcence of a fwelling in a tied nerve, which, in reality, is not fufficiently true; with other arguments of the like kind, which, indeed,
deed, flow the weaknefs of our fenfes, but have not any validity againft the real exiftence of a juice or firit in the nerves.
§.391. But concerning the nature of this nervous liquid, there are many doubts; for many of the moderns will have it to be extremely elaftic of an wtherial or of an electrical matter; but the more reafonable part make it to be incompreffible and watry, but of a lymphatic or albuminous nature. Indeed, it is not to be denied, but we have many arguments againft admitting any fyftem that has been hitherto advanced. An electrical matter is, indeed, very powerful, and fit for motion; but then it is not confinable within the nerves, fince it penetrates throughout the whole animal, to which it is communicated, exerting its force upon the flefh and fat, as well as upon the nerves. But in a living animal the nerves only, or fuch parts as have nerves running through them, are affected by irritation; and, therefore, this liquid munt be of a nature that will make it to flow through, and be contained within the fmall pipes of the nerves.
§.392. A watry and albuminous nature is common to moft of the juices in the human body, and may be, therefore, readily granted to the juice of the nerves; like the firm ferous water, which exhales into the ventricles of the brain from the fame veffels, alfo from the example of a gelatinous of lymphatic juice, which flows out in cutting through the brain in finh, and the larger nerves of brute animals, to which add the tumour, which arifes in tied
nerves. But are thefe properties fufficient to explain the wonderful force of convulfed nerves, obfervable in the diffections of living animals, and even in the leffer infects, with the great Atrength of mad and hyfterical people? whether or no is not this difficulty fomewhat leffened from the hydroftatical experiments of attraction in fmall tubes? which, although it may explain the ftrength and motion, is neverthelefs inconfiftent with the celerity.
§. 393. Therefore, upon the whole, it feems to be certain, that, from the veffels of the cortex, a liquor is feparated into the hollow pipes of the medulla, which are continued with the fmall tubes of the nerves, even to their foft, pulpy extremities, fo as to be the caufe both of fenfe and motion ; but the precife nature of this juice does not feem to be yet known. That it is extremely moveable, fufficiently appears as well from the nature of the blood that goes to the brain (§.339.) as from the effects or appearances which follow from it, and from the nature of tenuity itfelf, by which Sir Ifaac Newton has obferved the powers of bodies are increafed. But we muft well diftinguifh this juice from that vifible thick liquor, which diftils from the fmall veffels, which run in the cellular fabric betwixt the threads of the nerves.
§. 394. If it be afked, what becomes of this nervous juice, which cannot but be feparated and diftributed in great abundance from fo large a quantity of blood, paffing the brain very fwiftly, in comparifon of the flower mov-
ing blood, from whence the milk is feparated in the breaft, and the urine in the leffer renal artery, or by a comparifon with the mefenteric artery? it may be anfwered, it exhales probably through the cutaneous nerves; and fome have judged, that it alfo exhales into the various cavities of the body, as that of the ftomach, inteftines, \&c. but that it exhales into the blood-veffels, does not feem very confiftent with the courfe of nature; although it may be fuppofed to be taken up by the leaft abforbing veins, which by degrees open into the larger. That thus it may be reforbed from the cavities of the body, is not inconfiftent. But whether it can return again within the fame nerves to the brain, fo that the nerves can refemble arteries and veins as to the courfe of their fpirits? or whether fenfation arifes from fuch a return, are as yet mere conjectures?
§. 395 . But then, what is the defign of fo many protuberances in the brain, what are the particular ufes of the ventricles, nates, and teftes, with the diftinction of the brain from the cerebellum, and the communication betwixt one fide of the brain, cerebellum and fpinal medulla, with their oppofite fides by fo many tranfverfe bundles of fibres. Thefe ftill remain to be determined.
§. 396. The ventricles feem to be made of neceffary confequence, and towards the greater ufe and diftinction of the parts. And that the corpora ftriata or thalami might keep their medullary parts from cohering one to another, is was neceffary for a vapour to be poured be-
twixt them; and the fame is true, with regard to the brain and cerebellum. Perhaps likewife the neceffity of adminiftring a degree of warmth to the clofe medulla of the brain may be one reafon for thefe cavities, by which the arteries enter, and are diftributed in great numbers.
$\S .397$. The ufes of moft of the protuberances we are not acquainted with, but have them yet to learn from difeafes, and from anatomical experiments made on animals, having a brain like that of mankind. But, in thefe refpects, we have little hopes of fuccefs, in parts that are fo fmall, fo deeply, and fo difficultly fituated, and hardly ever to be approached, but by a wound foon fatal. Whether thefe parts are fo many diftinct provinces, in which our ideas are ftored up; and whether this be confirmed by the protuberant thalami of the optic nerve, are, indeed, queftions. But then moft of thefe protuberances fend out no nerves at all.
§.398. As to the internal communication of one part with the other by ftriæ or ducts; that feems to conduce to the advantage of motion, and probably of fenfe likewife. Some of thefe communications join the brain with the cerebellum, others join the final medulla with the nerves of the brain itfelf, as in the acceffory nerve, and moft of them join the right and left parts together, as in the anterior conjunction before-mentioned (§. 362.), and in the two pofterior ($\$.365$.), in that of the corpus callofum (§.360.), in the ftrix, betwixt a procefs of the cerebellum and teftes ($\$.368$.);
to which add, the medullary crofs-bars in the medulla oblongata and fpinalis (§.369.). For, from this ftructure, it feems manifeftly to follow, as well as from numberlefs experiments and obfervations, that when the right fide of the brain is injured, all the nerves, which belong on the contrary to the left fide of the body, become difeafed or paralytic, and the reverfe. Moreover, by this contrivance, nature feems to have provided, that, in whatever part of the brain an injury may happen, the nerve, that arifes from thence, is, by this means, not always deprived of its ufe. For if the faid nerve receives its fibres by communicating bundles, as well from the oppofite as from its own hemiPphere of the brain, its office may, in fome meafure, be continued entire by the fibres, which it receives from the oppofite fide, even after thofe of its own fide are deftroyed. Accordingly we have numberlefs inftances of wounds, and with a confiderable lofs of fubftance from the brain, which yet have not been followed with injury to any nerve, or to any of the mental faculties. [Many other lefs inequalities, fripes, protuberances, and nervelike impreffons appear in the brain from mechanical neceffity, with the pulfation of the veffels, and the preffure or figure of the continous incumbent parts.]
$\S .390$. Whether or no there are diftinct provinces for the vital or fpontaneous, and for the animal or voluntary actions? and whether the cerebellum furnifines the heart and other vital organs with neryes, while the brain fup-
plies the nerves, which go out to the organs of fenfe and voluntary motion? indeed, this, though an eleyant fyftem, is every where confuted by anatomy. From the cerebellum, the fifth nerve is manifeftly produced; but then this goes to the tongue, to the pterygoide mufcles, buccinators, temporals, frontals, mufcles of the outer ear, of the eye, and of the nofe, which are parts all of them either moved by the will, or elfe deftined to fenfation. Again, from one and the fame nerve, as in the eighth pair, there are vital branches fent to the heart and lungs, and others that are animal and voluntary to the larynx, or fenfitive in the ftomach. Laftly, the repeated accounts of injuries to the cerebellum, being fo fuddenly and fpeedily fatal, are not altogether true; for that both wounds and fcirrhofities of this part have been fuftained without any fatality to the patient, may be affirmed by certain experience, our own not excepted. [Nor is the difference of the brain, having a fofter and finer texture than the cerebellum, any thing very confiderable. But why does the brain appear itfelf infenfible, and never tranfmit any preffure upon it to the mind? for this plain reafon, that all fenfe is transferred to the mind, through the tubular medulla of the brain, which being either compreffed, or otherwife occluded, no impulfion on the mind, even from its own preffure, can be received into the intellect.]
$\S .400$. But if this elegant hypothefis (§. 399.) be not true, you will fay, what is the caufe of the perpetual motion in the heart, inteftines
and other parts, which appear to want no inclination of the will to put them in motion and which, when in motion, are not governalle by any power of the mind? why does the pu fation of the heart and arteries continue in an apoplexy after the nervous fyftem is echpfed, from whence all the voluntary motions or fenfes arife ? indeed, the caufe is fo ample, as to be probably the occafion of its being almoft univerfally overlooked. It is a general principle with nature in the animal fabric, for thofe organs to operate perpetually, which are moft tender or irritable, which are mof apt for motion, and which are, laftly, under a perpetual fimulus or irritation. The heart then is continually provoked to action by the venal blood, which it expels (§. I12, 115.). The fame is alfo fo eaflly and apt to be put in motion, that it may be recalled even after death; its mufcular fabric is very folid and reticular, and its ftrength very confiderable; from all which, therefore, it is extremely moveable, and its irritability appears more efpecially by the experiments before-mentioned (vid. §. 87.). Again the inteftines alfo are extremely fenfible; and, as will appear in their defcription, full of nerves, and from the circular pofition of their fibres apt to contraction, as we fee in all parts that have fuch a difpofition of their fibres. And befides this, they are almof perpetually irritated to motion, either by the chyle or aliments, by the confined air which they include, or by the bile fent from the liver; to which add the preffure of the hard faces. With refpect to
the refpiration, its perpetuity has been fpoken of before, the alternation of which feems to me no otherwife explainable, than from the anxiety or uneafinefs which follows both after infipiration and expiration, which call both for a feeedy change. Vid. §. 293, 294, 298.
§. 401. We have before declared, that the nerves are the organs of fenfe and motion; we Thall, therefore, proceed firft to explain that motion before we defcribe the organs of fenfe; becaufe it is more fimple, uniform, and perpetually exercifed, even in the fætus before any of the fenfes.

LEC

LECTUREXII.

Of mufcular motion.

§. 402 . Y the name of mufular fibres in the human body, we call bundles of reddilh coloured threads, which, by an approximation of their extremities, perform all the motions of which we are fenfible. When many of thefe fibres are collected together, and appear more evidently red, they are called a muifcle. The extreme fimplicity of the fabric in thefe parts has been the caufe of the obfcurity that prevails in underfanding, how a fmall, foft, flefhy portion can produce fuch ftrong and ample motions as we fee in man, but more efpecially in the cruftaceous infects.
8. 403. In every mufcle we meet with long foft threads or fibres, fomewhat elaftic or extemfible, and almof conftantly difpofed parallel with each other; and thefe, being furrounded with a good deal of cellular fubtance, are by that faftened together into little bundles. Thofe bundles, called lacertuli, are again tied together into larger bundles, by a more loofe cellular net-work, which contains fome fat; and betwixt thefe we conftantly perceive membramous partitions and ftripes of the cellular fubftance, removing them farther from each other, 'till, at laft, a number of them, combined together in a pofture either parallel or inclined, are furrounded with a more thin and denfe cellular

Of Mufeular Motion.

membrane, continuous with that of their partitions; and this being again furrounded by a thicker plate of the cellular fubftance, externally parts the whole from the adjacent flefh, and gives it the denomination of a fingle or entire mufcle. In every one of thefe threads there appears a leffer feries of filaments, which, by oblique extremities, are cemented to others of the fame kind forming together a larger fibre.
§. 404. The generality of the mufcles, but more efpecially thofe which are inferted into the bones, and fuch as are preffed ftrongly by other flefhy incumbent parts, do not confift of fibres altogether of one kind. For the flemy fibres (§.403.), being collected together, caufe the mufcle to be thicker in the middle, which is called its belly; and the fame fibres, degenerating by degrees obliquely at each end of the mufcle into a more flender, hard and mining fubftance of a filver colour, change the nature of flefh for that of tendon, in which, meeting clofer together, the cellular fubftance interpofed is thinner, fhorter, and painted with fewer veffels; whence it paffes under the denomination of a tendon, by being collected together into a round flender bundle; or elfe, if it expands into a broad flat furface, it is called an aponeurofis. For that the flefly fibres truly change into fuch as are tendinous, is evident from comparing a fætus (in which there are very few tendons) with a child of fome years growth, in which there are many more; and both with an adult or old perfon, in which are
the greateft number. Mufcles, which are not inferted into any of the bones, have commonly no tendons, as the fphincters and mufcular membranes of the vifcera and veffels. But thofe commonly end in long tendons, which are required to pafs round the joints and heads of the bones, to be inferted in thofe extremities which are more moveable. In a fœtus, the mufcles are evidently inferted into the perioftium only; but in adults, where the perioftium is more clofely joined and incorporated with the bone itfelf, the tendons, being confufed with the perioftium, pafs together with that even into the foveoli of the bone.
§. 405 . Within the cellular fubftance or membrane that furrounds the fibres, the arteries and veins are fubdivided into net-works, which commonly form right angles, run in company, and mofty contiguous with each other; and from the fmaller of thefe veffels a vapour is exhaled into the thinner cellular fubfance, as the fat is alfo transfufed into the thicker cellular fubfance; from whence again they are both abforbed. The lymphatic veffels, which run betwixt the mufcles of the tongue, with thofe of the neck, face and limbs, are difficultly demonftrated. But there are alfo nerves more numerous than in other parts, diftributed together with the blood-veffels throughout the cellular fabric of the mufcle; which nerves, however, deponte their harder covering, and become foft before they can be traced to their ultimate extremities in which they difappear. Thofe enter the mufcle in many parts, with-
out keeping to the fame place or fituation; but in the tendons, they are very difficultly demonftrated. Nor are there any nervous fibres inverting the mutcular bundles or portions, fo as to contringe them; for they, who have given fuch a defcription, have feen nothing but the cellular fubfance.
§. 406. The fabric of the leaft, which are as the elements of a mufcle, being diveftigated by the microfcope in man and other animals, has always appeared fimilar to the fabric of the larger fibres; nor do they yield any other appearance, upon which we can rely, than that of the leaft threads joined one to the other by the intermediate cellular fubfance. There is, therefore, no foundation here for a feries of veficles, nor for a chain of rhombs. It may be afked, whether thefe fibres are hollow, whether they are continued with the arteries? or whether the difference betwixt mufcular and tendinous fibres lies in the latter, being rendered more denfe and beat clofer together by an expulfion of the fluids? that thefe are not probable, appears from the minutenefs of the fibres, which are found lefs than the red blood-globules, and from the whitenefs-of a mufcle after the blood is wafhed out of it; to which add the phyfiological reafons following, (§.411.).
§. 407. It is natural to every mufcle to fhorten itfelf, by drawing the extremities towards its belly or middle. But to difcover the moving power of a murcle from the fabric, which we have defcribed, it will be of ufe to confider the appearances, obfervable in mufcular contraction.
traction: Every mufcle then becomes fhorter and broader in its action; but this contraction of its length is various, in fome more, in others lefs, and is very confiderable, for example, in fome of the fphincters, infomuch that they appear to be contracted more than one third of their extent, though this computation be taken from an erroneous hypothefis. At the fame time that the mufcle is broader, it alfo becomes harder, and every way extended throughout its whole circumference; as for example, in the heart, in the maffeters. Moreover, this motion in a living animal is made with a convulfive fwiftnefs, while the fibres and mufcular portions are drawn out of their fimple rectilineal courfe into undulated wrinkles, which are formed as well in the elementary fimple fibres, as in the more compound lacertuli or bundles; wherefore the motion of every mufcle lies in a retraction of the fibres within themfelves, which being alternately more or lefs contracted, increafe or diminifh the length and breadth of any interval betwixt the points of contraction. I obferve alfo, that the larger mufcular portions themfelves are drawn out of their courfe, fo as to form different angles with each other, and with the bones which they move; and in general, right angles are changed into fuch as are unequal; but that the mufcles grow pale in their action, does not appear in all my experiments.
§.408. Moreover, that we may difcover the caufe of mufcular motion, we are to obferve, that in every mufcular fibre, even after death,
there is a force or endeavouring to contract its length, by which, being left to itfelf, it becomes fhorter; and from hence, mufcles, that are divided even in a dead body, recede by contrakting from each other, fo as to leave a confiderable interval. [Again, the parts of a moving fibre, being agitated or irritated by any force, which we call a fimulus, whether cold, puncture with the knife, acrid poifons, \&c. does immediately exert a vital corrugation, or contraction, different from the former dead one, of elafticity, fo long as the vital or locomotive, but unknown, difpontion of its parts remains, even after death; by which irritation, we obferve, it will palpitate for a time, by alternately corrugating and elongating itfelf. This faculty of irritability is never obferved to refide in any part of the cellular fubftance; nor in membranes, fo far as they are, in a great meafure, compofed out of that fubfance; in ligaments it is farce obfervable in any degree, and in tendons it is extremely weak: but in muicles, more efpecially thofe of the heart and inteftines, it refides in a moft remarkable degree, fo as to be fufceptible of irritation and contraction longer than in any other parts of the dying animal, and even for many hours after death; and in thefe parts too, the action is more violent in proportion, as the faculty or power longer remains, and is more eafily excited than in other parts. It muft be alio confeffed, that the evulfion of a mufcular irritable part out of the animal body, fo as to cut off all union with its nerves, and intercept all intercourse betwixt it-
feif and the brain, does not much abate the irritable faculty and contractile force of the part, more efpecially in the heart and inteftines. That this irritable power of corrugation or contraction prevails largely, throughout all the animal fibres that are motive, appears plainly from the obfervations made upon the polype and other fimilar infects; which, being formed without either brain or nerves, are neverthelefs extremely motive and impatient of all ftimulus. Add to thefe, fhell-fifh and the analogy of fome plants, whofe flowers and leaves move their places, by expanding or cointracting with heat or cold, and fome of them with a fort of fenfative celerity, not inferior to that of animals. This force is, therefore, a new and hitherto neglected priaciple, different from the other known properties of bodies, and is not like them to be accounted for, either by gravity, attraction, or elafticity; but depends upon an unknown difpofition of the parts in a foft moving fibre, which loofes this force as it hardens and dries. See remark to §̧. 6.]
§. 409. But that the caufe of motion is conveyed through the nerves into the mufcles, is certain from the experiments before-mentioned (§378). Namely, a gerve or the fininal medulla, being irritated in an animal, even foon after death, the mufcle or mufcles, which are fupplied in branches from that nerve, become languid or paralitic, fo as not to be able to move or to be recalled by any force to vital action. But if the ligature be taken off from the nerve, the force, by which the muficle is
put into aetion, is again recovered by it. This appears from numerous experiments, more efpecially upon fuch as have been made upon the phrenic and recurrent nerves. Alfo by irritating any nerve before you cut it, the mufcle, to which it goes, contracts, as you may learn by repeated trials, eafily to be made on the limbs or extremities. Moreover, the weight, which is raifed by a living muicle, breaks or tears one that is dead; whence it appears to be greater than the inherent caufe of contraction in a mufcle, by which, when living, the weight was raifed.
§. 410 . If it be demanded, whether the arteries conduce any thing to mufcular motion? and whether the palfy, which falls upon the lower limbs, after a ligature upon the aorta, be not an argument thereof? we anfwer, not at all, further than as they conduce to the integrity of a mufcle or to the confervation of the mutual fructure and habit of the parts, which they fupply with vapour, fat, \&cc. for the irritation of an artery does not affect or convulife the mufcle to which it belongs, nor does a ligature thereof caufe a palfy, unlefs after a confiderable time, when the mufcles begin to be deftroyed by a gangrene; and the palfy of the lower limbs from a ligature of the aorta belongs to an injury or lofs of the integrity of the fipinal medulla. Moreover, it is impracticable to explain the motion of peculiar muicles from a caufe derived with an equal force from the heart to all parts of the body; and again, the influence of the will is confined to the nerves, with-
without refiding in the arteries or other folid parts of the body.
§. 4 II. But the direct manner, by which the nerves excite motion in the mufcles, is fo obfcure, that we may almoft for ever defpair of, its difcovery. As to nervous veficles fwelling by a quicker flux of the neryous firits, they are inconfiftent with anatomical truth, which demonftrates the leaft vifible fibres to be cylindrical, and in no part veficular, and likewife repugnant to the celerity with which mufcular motion is performed, and with the bulk of a mufcle being rather diminifhed than increared during its action. Again, the inflation of rhomboidal chains in the fibres is equally repugnant both to the celerity, to infpection, and to anatomy. Finally, it is, by no mears, demonftrable, that the fibres, from fo few nerves, can be fo numerous, or diftributed in fo many different tranfverfe directions, with refpect to the mufcular threads, as thofe hypothefes require to be allowed. A complication of the nerves round the extremities or fibres, fo as to contract them by their elafticity, is founded upon a falfe ftructure of the mufcular fibre, fuppofing the nerves to be diffributed, where filaments of the cellular fubftance only can be demonitrated. [Moreover, the experiments on animals (§.4.88.), which, having neither brain or nerves, are yet very apt for motion, apparently demonftrate the intrinfic fabric of the mufcles to be fufficient for their motion, without other affiftance from the nerves.] Other explanations, derived from fpherules full of air
in the blood, fuppofe a falfe nature of that fluid; namely, a repletion of it with elaftic air, of which it has none, (§.306.)
§. 412. This only we are certain of, from what has been advanced, that the nerves act not by their mechanical contraction, which is extremely weak, but by the power of an influent liquid, detached, or fome way actuated, with great celerity. That mufcle, therefore, will be contracted, to which more nervous liquid arrives in a given time, whether that be from any impulfe of the will or other caufe refiding in the brain, or elfe from the power of fome timulus in the nerve itfelf. [Now whether the nervous liquid only increafes the irritable nature, or elfe augments barely the inherent corrugating force of the conftituent parts in the moving fibre, after a manner unknown to us, we fee, in either cafe, that the confequence is a Chortening of the fibre or mufcle.] More than this, I am not able to perceive. The fame mufcle is again relaxed, when this additional celerity in the motion of the nervous fluid is abated, and fends it only in fuch a quantity as will make an equilibrium.
§.413. The effect of motion in the mufcles is a contraction or fhortening of them, by drawing their tendons almoft quiefcent each way towards their middle or flefhy belly, by which means the bones and other parts, in which the tendons are inferted, are brought together in the fame manner as when a mufcle cut out of the body, contracts or draws its two extremities towards the middle part or belly,

But if one of thefe extremities be lefs moveable or more fixed; then, that which is more moveable has a greater motion towards that which is more fixed, in a proportion inverfely as their mobility. If one end be immoveable, then the other, which is moveable, is alone brought towards it; and, in this fenfe, the difinction of origin and infertion of the mufcles is allowable; otherwife, without this limitation, it may be frequently the caufe of error.
§. 414 . The frrength of this action in the mufcles is very confiderable in all perfons, but more efpeciailly in thofe who are phrenetic, and fome who are called frong men; fince frequently, with the ufe of a few mufcles only, they will eafily raife a weight equal to, or much greater than, that of the whole human body itfelf. Notwithftanding this, we fee, that much the greater part of the force or power, exerted by a mufcle, is always loft without producing any vifible effect. For all the mufcles are inferted nearer the point or center of motion, than the weights they are applied to; and therefore their action is weaker, in the fame proportion, as they move a fhorter part of the lever, than that to which the weight is applied. Mureover, in moft of the bones, efpecially thofe of the limbs, the mulcles are inferted at very acute angles; whence again the effect, which a mufcle exerts in action, is proportionably lefs, as the fine of the angle, intercepted betwixt the bone and the mufcle, is lefs than the whole fine. Again, the middle part of all mufcular force is loft, becaufe it
may be reckoned as a cord extended, and drawing an oppofite weight to its fixed point. Again, many of the mufcles are feated in the angle of two bones, from one of which arifing they move the other; and, therefore, that bone being moved, they are bent, and, of courfe, like an inflected cord, require a new force to extend them. Many of them pafs over certain joints, each of which they bend in fome degree, whereby a lefs part of their remaining force goes to bend the joint to which they are particularly deftined. The flemy fibres themfelves of the mufcles frequently intercept angles with the tendon, in which they terminate; from whence a great part of their force is loft, as much as is equal to the difference or deviation betwixt the fine of the angle of their infertion and the whole fine. Finally, the mufles move their oppofed weights with the greateft velocity and exp=dition, fo as not only to overcome the equilbrium, but likewife to add a confiderable celerity to the weight.
§.415. All thefe loffes of power being com. puted, make it evident, that the force, exerted by mufcles in their contraction, is exceeding greaî beyond any mechanical ratio or proportion whatever; fince the effect is fcarce $\frac{1}{80}$ of the whole force exerted by the mufcle, and yet only a finall number of thefe mufcles, weighing but a few pounds; are able not only Bo raife fome thoufands of pounds, but alfo with a confiderable celerity. Nor is this to be reputed any defect of witdom in the creitpr.

For all thofe loffes of power were neceflary towards a juft fymmetry or proportion of the parts, with the various motions and celerities required by the mufcles to act in different directions; all which have no fhare in the compoftion of engines mechanically. But we inay, however, conclude from hence, that the ation of the nervous or animal fluid is very powerful ($\$.392$.), fince, in an engine fo fmall, it can exert a force equal to fome thoufand pounds for a confiderable time, or even for many days together; nor does this feem to be otherwife explainable, than by the incredible celerity, by which the influx of this fluid obeys the command of the will. But how, or from whence, it acquires fuch a velocity, is not in our power to fay ; 'tis fufficient, that we know the laws of its motion are fuch, that a given action of the will produces a new and determinate celerity in the nervous fluid or juice.
§. 416. The eafy and fudden relaxations of mufles in their motion are affifted by the actions of their antagonif mufcles. Namely, in all parts of the body every murcle is counterpoifed by fome weight, elafticity, an oppofite mufle or a humour acting againt the cavity of a mufcle, by which it is expelled. This oppofite caufe, which ever it be, continually operates as long as the mufcle acts, and, fo foon as the additional celerity, derived from the brain, abates, it refores the limb or other part immediately to its former eafy ftate, in which there an equilibrium betwixt the muicle and its oppoting caufe. Whenever the antagonift power is re-
moved from the mufcle, there are none of them but muft contract, extending their oppofites, by which the diftended nerves excite an uneafy fenfe, and caufe a ftronger endeavour towards recovering the equilibrium. Hence one of the flexor mufcles, being cut in two, the extenfor contracts or operates even in a dead body, and the reverfe.
§. 417. But there are other means, by which the motions of the mufcles are rendered more fafe, certain and eafy. The large long mufcles, by which the greater motions of flexure are performed, being included in tendinous capfules or cales, drawn and tightened by other mufcles, are thus fecured and ftrengthened; for fo the mufcle remains preffed againft the bone, in a ftate of contraction, all the time that the limb is bent, and avoids a confiderable lofs of its power. But the long tendons, which are incurvated or extended over joints in their motion, are received and confined by peculiar bands, which retain them within their flippery channels, and keep them from flipping out under the fkin , which diflocation of the tendon, whenever it happens, is attended with a cramp of the mufcle, fevere pain and lofs of motion. The fame kind of guidance or direction is received by fome of the mufcles, which perforate others in their courfe. In other parts, the tendons are either carried round certain eminencies of the bone, in order that they may be inferted at greater angles into the bone, which they move, or elfe they are inferted into another bone; from whence a dif-
herent tendon defeends under a larger angle into the bone to be moved. In other parts, the mufcles, which are derived from convenient fituations, have their tendons carried round in a contrary disection by nature, fo that they pafs into the part to be moved, as it were round a pully. Nature has likewife furrounded the mufcles on all fides with fat, which is sprad alfo betwixt their bundles of fibres and the fmall fibres themfelves which lie contiguous together; which fat, being preffed out by the turgefcence of the mufcles and fibres, reindes them foft, fexible, flippery, and fit for motion.
§. 418 . Moreover, the power and action of one mufcle is determined by the co-operations or oppofitions of others, which ferve either to hold firm fome part from whence the mufcle arifes, or to bend it together with the mufcle, or elfe to change its action from the perpendicular to the diagonal, by concurring to affit its force at the fame time. Therefore, the action of no, one mufcle can be underftood from confidering it alone, but all the others muft likewife be brought into the confideration, which are either inferted into the mufcle itfelf, or into any of the parts to which the faid mufcle adheres.
§. 419. By thefe mufcles, variouily confpiring and oppofing each other, are performed walking, ftanding, flexion, extenfion, deglutition, and all the other geftures and offices of the feveral parts in the living body. But the mufcles have likewife fome common or public actions, by which they are of ufe to the whole Voi.I.

Z
animal blood, by preffing it out from the veins, both of the muicles themfelves as, well as of the veins which lie betwixt them; for the blood in thefe velfels, diftributed betwixt the turgid bundles of a contracted mufcle, is, by the valves, determined towards the heart only; they likewife return the fat to the blood, Chake, grind, or denfify the arterial blood, and return it quicker to the lungs. Again, in the liver, mefentery, womb, 8 c. they promote the courfe of the contained blood, bile and other juices, fo as to leffen the danger of their fagnation; they ferve alfo to increafe the firength of the ftomach, by adding their own ftrength to it, whereby digeftion is promoted, infomuch that all fedentary and inactive courfes of life are contrary to nature, and pave the way to difeafes from a fagnation of the humours or from a corruption or crudity of the aliments. But by too much exercife or action, the mufcles themfelves grow hard and tendinous on all fides, render the parts, upon which they are incumbent cartilaginous, or elfe change thofe, which are membranous, into a bony nature; at the fame time they increafe the roughnefs, protuberances and proceffes of the bones, flatten theri flaes which lie rext to them, and dilate the celis feated in the diploe or fpuagy heads of the bones themflyes towards their fronger action.
§. 420. The muicles are commonly diftinguifhed into claffes, according as they either reft fpontaneoufly, or are put into action by an
inclination of the will; whence they are called voluntary and involuntary, while others are mixed. Some of them operate fpontaneoully, and can neither be excited nor retarded by the will, as in the heart and inteftines; and fome again are fubfervient to a mixed power, as they operate by a fpontaneous motion, and are likewife governable by the will at the fame time, as in the mufcles of refpiration. There have been various caufes affigned for this difference; but I think the queftion has been fufficiently anfwered before at §. 400 .

The End of VOL.I.

Nall

$+$

1
$4-4$
$\$$

1

```
MMhct4.125% %/,
    COUNTWAY LIBRARY OF MEDICINE
    QP
    34
    H15 E3
    V.1
    RARE BOOKS DEPARTMENT
```


[^0]: mos. V. Pral. viii. 6. \& Cicero. I. de legibus. Quid autem non dicam in bomine: fed in onni ceelo atsuse terra ratione divinitus.

[^1]: * Gen. c. i. v. 29. \& Cic. de nat. deor. \& Offic. lib. -. Que in terra gignuntur, ad ufus bominum omnia creaen: -Terra enim foeta frugibus, © vario leguminum genere quce manima largitate fundit ea forarumine an bominum coun gignere videtur? Quid de vitibus olivetifque dicam. Curizu fide cuftodia, tamque amans dominorum adulatio? wiol de bidic quorum torga adomis; corvices ad jugum? Eoc.

[^2]: * Nunc dea, nunc fuccurre mihi, nam pofle mederi, picta docet templis, multa tabella tuis. Tibult, lib. r. eleg. I3.

[^3]: Vol. I.
 though

[^4]: * See alfo his Oratio de incrementis anatomix in hoc feculo XVIII. and Georgii Frankii Bona nova anatomica fuperioris feculi inventa, 4 to. Heidelb. $\& x$.

[^5]: * There are the common phyfical or natural elements of all anis mals and vegetables, eafily commutable one into the other.

[^6]: *V. Remark to §. 2, number 2. which never lofing its elafticity, as does the air, is the firft and great univerfal agent that actuates the reft of the elements for varying the face of nature.

